Abstract
Today, data warehouse systems are faced with challenges for providing nearly realtime response times even for complex analytical queries on enormous data volumes. Highly scalable computing clusters in combination with parallel in-memory processing of compressed data are valuable techniques to address these challenges. In this paper, we give an overview on core techniques of the IBM Smart Analytics Optimizer—an accelerator engine for IBM’s mainframe database system DB2 for z/OS. We particularly discuss aspects of a seamless integration between the two worlds and describe techniques exploiting features of modern hardware such as parallel processing, cache utilization, and SIMD. We describe issues encountered during the development and evaluation of our system and outline current research activities for solving them.





Similar content being viewed by others
Notes
Performance evaluations in the context of ISAOpt are still in progress.
References
Abadi D, Madden S, Ferreira M (2006) Integrating compression and execution in column-oriented database systems. In: SIGMOD ’06, proceedings of the 2006 ACM SIGMOD international conference on management of data. ACM, New York, pp 671–682 doi:10.1145/1142473.1142548
Beier F Parallel and non-disruptive reorganization of distributed in-memory database tables. Master’s thesis, Ilmenau University of Technology (2010)
Beier F, Stolze K, Sattler KU (2011, to appear) Online reorganization in read optimized MMDBS. In: Proceedings of the ACM SIGMOD international conference on management of data (SIGMOD), June 12–16
Bodner T (2010) Evaluation and implementation of specialized dictionaries for the IBM smart analytics optimizer. Bachelor thesis, Duale Hochschule Baden-Württemberg, Stuttgart
Bretschneider S (2009) Erstellung eines Werkzeugs zur automatischen Definition optimierter Data-Marts auf Grundlage vorhandener Abfragen und Abfragestatistiken. Master’s thesis, Hochschule für Wirtschaft und Recht Berlin
Deutsch P (1996) DEFLATE compressed data format specification version 1.3
Goldstein J, Ramakrishnan R, Shaft U (1998) Compressing relations and indexes. In: ICDE ’98, proceedings of the fourteenth international conference on data engineering. IEEE Comput. Soc., Washington, pp 370–379
Graefe G, Shapiro LD (1991) Data compression and database performance. In: Proc ACM/IEEE-CS symp on applied computing, pp 22–27
Holloway AL, DeWitt DJ (2008) Read-optimized databases, in depth. VLDB J 1(1):502–513
The IBM financial markets industry models: greater insight for greater value (2007). http://www.ibm.com/software/data/industry-models/financial-data/
IBM Corp (2009) General parallel file system—administration and programming reference, Version 3 Release 3. http://publib.boulder.ibm.com/epubs/pdf/a2322213.pdf
IBM Corp (2010) DB2 Version 9.1 for z/OS. http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2
Johnson R, Raman V, Sidle R, Swart G (2008) Row-wise parallel predicate evaluation. VLDB J 1(1):622–634
Lehner W (2003) Datenbanktechnologie für Data-Warehouse-Systeme. Konzepte und Methoden. Dpunkt Verlag, Heidelberg
Plattner H (2011) SanssouciDB: an in-memory database for processing enterprise workloads. In: Datenbanksysteme für Business, Technologie und Web (BTW). Lecture notes in informatics, pp 2–21
Raman V, Swart G, Qiao L, Reiss F, Dialani V, Kossmann D, Narang I, Sidle R (2008) Constant-time query processing. In: ICDE ’08, proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE Computer Society, Washington, pp 60–69
Roth MA, Van Horn SJ (1993) Database compression. SIGMOD Rec 22(3):31–39
TPC: TPC benchmark DS. Standard. Transaction Processing Performance Council (2007)
Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23:337–343
Zukowski M, Boncz PA, Nes N, Heman S (2005) MonetDB/X100—a DBMS in the CPU cache. IEEE Data Eng Bull 28(2):17–22
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stolze, K., Beier, F., Koeth, O. et al. Integrating Cluster-Based Main-Memory Accelerators in Relational Data Warehouse Systems. Datenbank Spektrum 11, 101–110 (2011). https://doi.org/10.1007/s13222-011-0056-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13222-011-0056-4