Skip to main content
Log in

Dynamic Event-Activity Networks in Public Transportation

Timetable Information and Delay Management

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

Real-time timetable information and delay management in public transportation systems are two challenging applications which can be modeled as optimization problems on dynamically changing, large and complex graphs, so-called event-activity networks.

We describe both applications in detail, review the state-of-the-art and explain the requirements for systems solving these problems in a productive environment. Focussing on recent research on decision support for train dispatchers, we sketch the system architecture for the software prototype PANDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.google.com/transit

References

  1. Bast H, Carlsson E, Eigenwillig A, Geisberger R, Harrelson C, Raychev V, Viger F (2010) Fast routing in very large public transportation networks using transfer patterns. In: de Berg M, Meyer U (eds) Algorithms - ESA 2010. Lecture Notes in Computer Science, Vol. 6346. Springer, Berlin Heidelberg, p 290–301

    Chapter  Google Scholar 

  2. Bast H, Delling D, Goldberg AV, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2016) Route planning in transportation networks. In: Kliemann L, Sanders P (eds) Algorithm engineering - selected results and surveys. Lecture Notes in Computer Science, Vol. 9220. Springer, Berlin Heidelberg, p 19–80

    Chapter  Google Scholar 

  3. Bauer R, Schöbel A (2014) Rules of thumb — practical online strategies for delay management. Public Transp 6:85–105

    Article  Google Scholar 

  4. Berger A, Blaar C, Gebhardt A, Müller-Hannemann M, Schnee M (2011) Passenger flow-oriented train disposition. In: Demetrescu C, Halldórsson MM (eds) Proceedings of the 19th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, Vol. 6942. Springer, Berlin Heidelberg, p 227–238

    Google Scholar 

  5. Berger, F (2016) GPU-basierte Parallelisierung von Reiseanfragen im Bahnverkehr mittels CUDA. Master’s thesis, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg

  6. Delling D, Dibbelt J, Pajor T, Werneck RF (2015) Public transit labeling. In: Bampis E (eds) Experimental Algorithms - 14th International Symposium, SEA 2015. Lecture Notes in Computer Science, Vol. 9125. Springer, Berlin Heidelberg, p 273–285

    Google Scholar 

  7. Delling D, Pajor T, Werneck RF (2015) Round-based public transit routing. Transp Sci 49(3):591–604. doi:10.1287/trsc.2014.0534

    Article  Google Scholar 

  8. Dibbelt J, Pajor T, Strasser B, Wagner D (2013) Intriguingly simple and fast transit routing. In: Bonifaci V, Demetrescu C, Marchetti-Spaccamela A (eds) Experimental algorithms, SEA 2013. Lecture Notes in Computer Science, Vol. 7933. Springer, Berlin Heidelberg, p 43–54

    Google Scholar 

  9. Dollevoet T, Huisman D (2014) Fast heuristics for delay management with passenger rerouting. Public Transp 6:67–84

    Article  Google Scholar 

  10. Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89

    Article  Google Scholar 

  11. HaCon (2017) HAFAS - the perfect connection to your customers. www.hacon.de/hafas-en. Accessed: 19. Febr. 2017

    Google Scholar 

  12. Kanai S, Shiina K, Harada S, Tomii N (2011) An optimal delay management algorithm from passengers’ viewpoints considering the whole railway network. J Rail Transp Plan Manag 1:25–37

    Article  Google Scholar 

  13. Kliewer N, Suhl L (2011) A note on the online nature of the railway delay management problem. Networks 57:28–37

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemnian M, Rückert R, Rechner S, Blendinger C, Müller-Hannemann M (2014) Timing of train disposition: Towards early passenger rerouting in case of delays. In: Funke S, Mihalák M (eds) 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2014. OASICS, Vol. 42. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, Wadern, p 122–137

    Google Scholar 

  15. Müller-Hannemann M, Schnee M (2009) Efficient timetable information in the presence of delays. In: Ahuja R, Möhring RH, Zaroliagis C (eds) Robust and online large-scale optimization. Lecture notes in computer science, Vol. 5868. Springer, Berlin Heidelberg, p 249–272

    Chapter  Google Scholar 

  16. Müller-Hannemann M, Schulz F, Wagner D, Zaroliagis C (2007) Timetable information: models and algorithms. In: Algorithmic methods for railway optimization. Lecture notes in computer science, Vol. 4395. Springer, Berlin Heidelberg, p 67–89

    Chapter  Google Scholar 

  17. Rodriguez MA (2015) The Gremlin graph traversal machine and language (invited talk). In: Proceedings of the 15th Symposium on Database Programming Languages, DBPL 2015. ACM, New York, p 1–10

    Google Scholar 

  18. Rückert R, Lemnian M, Blendinger C, Rechner S, Müller-Hannemann M (2016) PANDA: a software tool for improved train dispatching with focus on passenger flow. Public Transportation. doi:10.1007/s12469-016-0140-0

    Google Scholar 

  19. Schöbel A (2001) A model for the delay management problem based on mixed-integer programming. Electron Notes Theor Comput Sci 50(1): 1–10. doi:10.1016/S1571-0661(04)00160-4

  20. Schöbel A (2006) Customer-oriented optimization in public transportation. Springer, Berlin

    MATH  Google Scholar 

  21. Witt S (2015) Trip-based public transit routing. In: Bansal N, Finocchi I (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science, Vol. 9294. Springer, Berlin Heidelberg, p 1025–1036

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support by grant MU 1482/7-1 within the DFG research group FOR 2083 Integrated Planning in Public Transport and by Deutsche Bahn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Müller-Hannemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Hannemann, M., Rückert, R. Dynamic Event-Activity Networks in Public Transportation. Datenbank Spektrum 17, 131–137 (2017). https://doi.org/10.1007/s13222-017-0252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-017-0252-y

Keywords

Navigation