Abstract
This document describes the IR research group at the University of Duisburg-Essen, which works on quantitative models of interactive retrieval, social media analysis, multilingual argument retrieval and validity of IR experiments.

Notes
See Silverman’s story on Buzzfeed about fake election news outperforming real news on Facebook https://bzfd.it/2oPK9XZ.
References
Aker A, Derczynski L, Bontcheva K (2017) Simple open stance classification for rumour analysis. CoRR abs/1708.05286. http://arxiv.org/abs/1708.05286
Aker A, Kanoulas E, Gaizauskas RJ (2012) A light way to collect comparable corpora from the web. LREC, Citeseer, pp 15–20
Aker A, Paramita ML, Gaizauskas RJ (2013) Extracting bilingual terminologies from comparable corpora. ACL 2013 – 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. 1, pp 402–411
Aker A, Zhang H (2017) Projection of argumentative corpora from source to target languages. Proceedings of the 4th Workshop on Argument Mining, pp 67–72
Aker A, Sliwa A, Ma Y, Lui R, Borad N, Ziyaei S, Ghobadi M (2017) What works and what does not: classifier and feature analysis for argument mining. Proceedings of the 4th Workshop on Argument Mining, pp 91–96
Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econ Perspect 31(2):211–236
Douglas K, Ang CS, Deravi F (2017) Farewell to truth? conspiracy theories and fake news on social media. Psychologist. https://kar.kent.ac.uk/60679/1/Douglas%20Sutton%20Deravi.pdf
Dungs S, Fuhr N (2017) Advanced hidden markov models for recognizing search phases. Proceedings Of The 3rd ACM International Conference on the Theory of Information Retrieval., ICTIR ’17. ACM, New York, pp 1–1 https://doi.org/10.1145/3121050.3121090
Dungs S, Aker A, Bontche K, Fuhr N (2018) Stance based rumour veracity prediction. Proceedings Of COLING.
Ferro N, Fuhr N, Jarvelin K, Kando N, Lippold M, Zobel J (2016) Increasing reproducibility in ir: findings from the dagstuhl seminar on ”reproducibility of data-oriented experiments in e‑science”. SIGIR Forum 50(1):68–82 (http://sigir.org/files/forum/2016J/p068.pdf)
Ferro N, Fuhr N, Grefenstette G, Konstan JA, Castells P, Daly EM, Declerck T, Ekstrand MD, Geyer W, Gonzalo J, Kuflik T, Linden K, Magnini B, Nie JY, Perego R, Shapira B, Soboroff I, Tintarev N, Verspoor K, Willemsen MC, Zobel J (2018a) The Dagstuhl Perspectives Workshop on performance modeling and prediction. SIGIR Forum 52(1): https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=17442
Ferro N, Fuhr N, Grefenstette G, Konstan JA, Castells P, Daly EM, Declerck T, Ekstrand MD, Geyer W, Gonzalo J, Kuflik T, Linden K, Magnini B, Nie JY, Perego R, Shapira B, Soboroff I, Tintarev N, Verspoor K, Willemsen MC, Zobel J (2018b) Building a predictive science for performance of information retrieval, natural language processing, and recommender systems applications (dagstuhl perspectives workshop 17442). Dagstuhl Manifestos 8
Freire J, Fuhr N, Rauber A (2016) Reproducibility of data-oriented experiments in e‑science. Dagstuhl Rep 6(1):108–159
Fuhr N (1992) Probabilistic models in information retrieval. Comput J 35(3):243–255
Fuhr N (2008) A probability ranking principle for interactive information retrieval. Inf Retr Boston 11(3):251–265. https://doi.org/10.1007/s10791-008-9045-0
Fuhr N (2017) Some common mistakes in ir evaluation, and how they can be avoided. SIGIR Forum 51(3):32–41 (http://sigir.org/wp-content/uploads/2018/01/p032.pdf)
Fuhr N, Rölleke T (1998) HySpirit – a probabilistic inference engine for hypermedia retrieval in large databases. Proceedings of the 6th International Conference on Extending Database Technology (EDBT). Springer, Heidelberg, pp 24–38
Fuhr N, Giachanou A, Grefenstette G, Gurevych I, Hanselowski A, Jarvelin K, Jones R, Liu Y, Mothe J, Nejdl W et al (2018) An information nutritional label for online documents. ACM SIGIR Forum 51:46–66
Hu M, Liu S, Wei F, Wu Y, Stasko J, Ma KL (2012) Breaking news on twitter. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Austin, TX, pp 2751–2754
Klein DO, Wueller JR (2017) Fake news: a legal perspective. J Internet Law 20(10):6–13
Levy R, Bilu Y, Hershcovich D, Aharoni E, Slonim N (2014) Context dependent claim detection
Lippi M, Torroni P (2015) Context-independent claim detection for argument mining. Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence, pp 185–191
Lippi M, Torroni P (2016a) Argument mining from speech: detecting claims in political debates. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), pp 2979–2985
Lippi M, Torroni P (2016b) Argumentation mining: state of the art and emerging trends. ACM Trans Internet Technol 16(2):10
McClain CR (2017) Practices and promises of facebook for science outreach: becoming a nerd of trust. PLoS Biol 15(6):e2002020
Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: can we trust what we rt? Proceedings of the first workshop on social media analytics. ACM, Washington DC, pp 71–79
Nguyen HV, Litman DJ (2015) Extracting argument and domain words for identifying argument components in texts. Proceedings of the 2nd Workshop on Argumentation Mining, pp 22–28
Peldszus A, Stede M (2015) An annotated corpus of argumentative microtexts. Proceedings of the First Conference on Argumentation, Lisbon
Pennycook G, Cannon TD, Rand DG (2017) Prior exposure increases perceived accuracy of fake news. J Exp Psychol Gen. https://doi.org/10.2139/ssrn.2958246 (http://ssrn.com/abstract=2958246)
Pfeifer U, Fuhr N, Huynh T (1995) Searching structured documents with the enhanced retrieval functionality of freeWAIS-sf and SFgate. Proceedings of the third International World-Wide Web Conference. Elsevier, Amsterdam, pp 1027–1036
Qazvinian V, Rosengren E, Radev DR, Mei Q (2011) Rumor has it: identifying misinformation in microblogs. Proceedings of EMNLP, pp 1589–1599
Reed C, Mochales Palau R, Rowe G, Moens MF (2008) Language resources for studying argument. Proceedings of the 6th conference on language resources and evaluation-LREC 2008. ELRA, Marrakech, pp 91–100
Sardianos C, Katakis IM, Petasis G, Karkaletsis V (2015p) Argument extraction from news. NAACL HLT 2015, p 56
Schaefer A, Jordan M, Klas CP, Fuhr N (2005) Active support for query formulation in virtual digital libraries: a case study with DAFFODIL. In: Rauber A, Christodoulakis C, Tjoa AM (eds) Proc. ECDL. Lecture Notes in Computer Science. Springer, Heidelberg
Sliwa A, Ma Y, Liu R, Borad N, Fatemeh Ziyaei S, Ghobadi M, Sabbah F (2018) Multi-lingual argumentative corpora in english, turkish, greek, albanian, croatian, serbian, macedonian, bulgarian, romanian and arabic. LREC 2018 Proceedings.
Suciu D, Olteanu D, Ré C, Koch C (2011) Probabilistic databases. Synthesis lectures on data management. Morgan & Claypool Publishers, San Rafael, California
Swanson R, Ecker B, Walker M (2015) Argument mining: extracting arguments from online dialogue. Proceedings of 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2015), pp 217–227
Tran VT, Fuhr N (2012) Using eye-tracking with dynamic areas of interest for analyzing interactive information retrieval. In: Hersh WR, Callan J, Maarek Y, Sanderson M (eds) Proc. SIGIR. ACM, Prague, pp 1165–1166
Tran VT, Fuhr N (2013) Markov modeling for user interaction in retrieval. SIGIR 2013 Workshop on Modeling User Behavior for Information Retrieval Evaluation (MUBE 2013).
Tran V, Maxwell D, Fuhr N, Azzopardi L (2017) Personalised search time prediction using markov chains. Proceedings Of The 3rd ACM International Conference on the Theory of Information Retrieval., ICTIR ’17. ACM, New York, pp 1–1 https://doi.org/10.1145/3121050.3121085
Tyers FM, Alperen MS (2010) South-east european times: a parallel corpus of balkan languages. Proceedings of the LREC Workshop on Exploitation of Multilingual Resources and Tools for Central and (South‑) Eastern European Languages, pp 49–53
Zobel J (2017) What we talk about when we talk about information retrieval. SIGIR Forum 51(3):18–26. https://doi.org/10.1145/3190580.3190584
Zubiaga A, Aker A, Bontcheva K, Liakata M, Procter R (2017) Detection and resolution of rumours in social media: a survey. ACM Comput Surv. https://doi.org/10.1145/3161603
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aker, A., Fuhr, N. The Information Retrieval Group at the University of Duisburg-Essen. Datenbank Spektrum 18, 113–119 (2018). https://doi.org/10.1007/s13222-018-0290-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13222-018-0290-0