Skip to main content

Advertisement

Log in

Geo Engine: Workflow-driven Geospatial Portals for Data Science

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

Geo data portals play a key role in the distribution and exploitation of domain-specific geo data. While such portals are highly specialized, they share a number of common requirements that span from data access and processing to UI components. Geo Engine is able to provide all the necessary parts for portal building. We demonstrate this on a real data portal we built for the dragonfly community and on a Data Science application. In addition, we show its general architecture and outline future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://github.com/geo-engine/geoengine.

  2. https://github.com/geo-engine/geoengine-ui.

  3. https://github.com/geo-engine/geoengine-python.

  4. http://www.opengeospatial.org.

  5. http://www.openapis.org.

  6. http://www.opencontainers.org.

  7. https://portal.geobon.org.

  8. http://www.nfdi4biodiversity.org.

  9. http://www.angular.io.

  10. http://www.webcomponents.org.

  11. http://www.material.io.

  12. http://www.libellula.org.

  13. Demonstration data from AK Libellen NRW (2020), http://www.ak-libellen-nrw.de.

  14. https://github.com/maja601/EuroCrops.

  15. https://registry.opendata.aws/sentinel-2-l2a-cogs.

  16. https://scikit-learn.org.

  17. https://earthengine.google.com.

  18. http://www.carto.com.

  19. http://www.mapbox.com.

  20. http://www.geonode.org.

  21. http://www.qgis.org.

  22. http://www.gbif.org/hosted-portals.

  23. http://www.ala.org.au.

References

  1. Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3(1):160018. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  2. Diepenbroek M, Glöckner FO, Grobe P et al (2014) Towards an integrated Biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFbio). In: GI-Jahrestagung. LNI Bonn. vol 232, pp 1711–1721

    Google Scholar 

  3. Berg L, Ziegler T, Binnig C, Röhm U (2019) ProgressiveDB – progressive data analytics as a middleware. In: Proceedings of the VLDB Endowment, vol 12. https://doi.org/10.14778/3352063.3352073

    Chapter  Google Scholar 

  4. Holanda P, Raasveldt M, Manegold S, Mühleisen H (2020) Progressive indexes: indexing for interactive data analysis. Proc VLDB Endow. https://doi.org/10.14778/3358701.3358705

    Article  Google Scholar 

  5. Beilschmidt C, Drönner J, Mattig M, Schweitzer P, Seeger B (2023) Geo engine: workflow-backed geo data portals. In: BTW 2023 https://doi.org/10.18420/BTW2023-55

    Chapter  Google Scholar 

  6. Sakimura N, Bradley J, Jones M, De Medeiros B et al (2014) Openid connect core 1.0. The OpenID Foundation

    Google Scholar 

  7. Rouault E, Warmerdam F, Schwehr K et al (2022) GDAL. Zenodo https://doi.org/10.5281/zenodo.6801315

    Book  Google Scholar 

  8. Open Geospatial Consortium (2010) OpenGIS implementation standard for geographic information – simple feature access (OpenGIS Project Document)

    Google Scholar 

  9. Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J (2017) Vega-lite: a grammar of interactive graphics. IEEE Trans Visual Comput Graphics. https://doi.org/10.1109/TVCG.2016.2599030

    Article  Google Scholar 

  10. Hoyer S, Hamman J (2017) xarray: N‑D labeled Arrays and Datasets in Python. J Open Res Softw. https://doi.org/10.5334/jors.148

    Article  Google Scholar 

  11. Odonatologen e.V (2022) GdOnline 2022. In: 2. Digitalkonferenz der Gesellschaft Deutschsprachiger Odonatologen (GdO e.V.) 18.-19. März 2022

    Google Scholar 

  12. Muñoz Sabater J (2019) ERA5-land monthly averaged data from 1981 to present (Copernicus Climate Change Service (C3S) Climate Data Store (CDS))

    Google Scholar 

  13. Riembauer G, Weinmann A, Xu S et al (2021) Germany-wide sentinel‑2 based land cover classification and change detection for settlement and infrastructure monitoring. In: Proceedings of the 2021 conference on big data from space, pp 53–56

    Google Scholar 

  14. Beilschmidt C, Fober T, Mattig M, Seeger B (2017) A linear-time algorithm for the aggregation and visualization of big spatial point data. In: SIGSPATIAL/GIS. ACM, New York, pp 73–1734 https://doi.org/10.1145/3139958.3140037

    Chapter  Google Scholar 

  15. Authmann C, Beilschmidt C, Drönner J, Mattig M, Seeger B (2015) VAT: a system for visualizing, analyzing and transforming spatial data in science. Datenbank Spektrum 15(3):175–184. https://doi.org/10.1007/s13222-015-0197-y

    Article  Google Scholar 

  16. Authmann C, Beilschmidt C, Drönner J, Mattig M, Seeger B (2015) Rethinking spatial processing in data-intensive science. In: BTW Workshops

    Google Scholar 

  17. Beilschmidt C, Drönner J, Mattig M, Seeger B (2017) VAT: a system for data-driven biodiversity research. EDBT. https://doi.org/10.5441/002/edbt.2017.66

    Book  Google Scholar 

  18. Killough B (2018) Overview of the open data cube initiative. In: International Geoscience and Remote Sensing Symposium (IGARSS) https://doi.org/10.1109/IGARSS.2018.8517694

    Chapter  Google Scholar 

  19. Gorelick N, Hancher M, Dixon M et al (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. https://doi.org/10.1016/j.rse.2017.06.031

    Article  Google Scholar 

  20. Iacovella S (2017) Geoserver beginner’s guide: share Geospatial data using open source standards

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant numbers O3EUPHE069 and 50EE2303B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beilschmidt.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beilschmidt, C., Drönner, J., Mattig, M. et al. Geo Engine: Workflow-driven Geospatial Portals for Data Science. Datenbank Spektrum 23, 167–175 (2023). https://doi.org/10.1007/s13222-023-00453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-023-00453-2

Keywords

Navigation