Skip to main content
Log in

On the Efficiency of Equilibria in Mean-Field Oscillator Games

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

A key question in the design of engineered competitive systems has been that of the efficiency loss of the associated equilibria. Yet, there is little known in this regard in the context of stochastic dynamic games, particularly in a large population regime. In this paper, we revisit a class of noncooperative games, arising from the synchronization of a large collection of heterogeneous oscillators. In Yin et al. (Proceedings of 2010 American control conference, pp. 1783–1790, 2010), we derived a PDE model for analyzing the associated equilibria in large population regimes through a mean field approximation. Here, we examine the efficiency of the associated mean-field equilibria with respect to a related welfare optimization problem. We construct constrained variational problems both for the noncooperative game and its centralized counterpart and derive the associated nonlinear eigenvalue problems. A relationship between the solutions of these eigenvalue problems is observed and allows for deriving an expression for efficiency loss. By applying bifurcation analysis, a local bound on efficiency loss is derived under an assumption that oscillators share the same frequency. Through numerical case studies, the analytical statements are illustrated in the homogeneous frequency regime; analogous numerical results are provided for the heterogeneous frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acemoglu D, Ozdaglar A (2007) Competition and efficiency in congested markets. Math Oper Res 32:1–31

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauso D, Tembine H, Basar T (2012) Robust mean field games with application to production of exhaustible resource. In: Proc of the 7th IFAC symposium on robust control design, Aalborg

    Google Scholar 

  3. Correa JR, Schulz AS, Stier NE (2004) Moses, Computational complexity, fairness, and the price of anarchy of the maximum latency problem. In: Integer programming and combinatorial optimization. Lecture Notes in Comput Sci, vol 3064. Springer, Berlin, pp 59–73

    Chapter  Google Scholar 

  4. Correa JR, Schulz AS, Stier-Moses NE (2004) Selfish routing in capacitated networks. Math Oper Res 29:961–976

    Article  MATH  MathSciNet  Google Scholar 

  5. Couillet R, Perlaza SM, Tembine H, Debbah M (2012) Electrical vehicles in the smart grid: a mean field game analysis. IEEE J Sel Areas Commun 30:1086–1096

    Article  Google Scholar 

  6. Couillet R, Perlaza SM, Tembine H, Debbah M (2012) A mean field game analysis of electric vehicles in the smart grid. In: INFOCOM workshops. IEEE Press, New York, pp 79–84

    Google Scholar 

  7. Doedel EJ, Champneys AR, Dercole F, Fairgrieve T, Kuznetsov Y, Oldeman B, Paffenroth R, Sandstede B, Wang X, Zhang C (2008) AUTO-07P: continuation and bifurcation software for ordinary differential equations

    Google Scholar 

  8. Huang M, Caines P, Malhame R (2012) Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans Autom Control 57:1736–1751

    Article  MathSciNet  Google Scholar 

  9. Huang M, Caines PE, Malham’e RP (2007) Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-nash equilibria. IEEE Trans Autom Control 52:1560–1571

    Article  MathSciNet  Google Scholar 

  10. Huang M, Malhamé RP, Caines PE (2005) Nash equilibria for large-population linear stochastic systems of weakly coupled agents. In: Analysis, control and optimization of complex dynamic systems. GERAD 25th Anniv Ser, vol 4. Springer, New York, pp 215–252

    Chapter  Google Scholar 

  11. Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6:221–251

    MATH  MathSciNet  Google Scholar 

  12. Iooss G, Joseph DD (1980) Elementary stability and bifurcation theory. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Jahn O, Möhring RH, Schulz AS, Stier-Moses NE (2005) System-optimal routing of traffic flows with user constraints in networks with congestion. Oper Res 53:600–616

    Article  MATH  MathSciNet  Google Scholar 

  14. Johari R, Mannor S, Tsitsiklis JN (2005) Efficiency loss in a network resource allocation game: the case of elastic supply. IEEE Trans Autom Control 50:1712–1724

    Article  MathSciNet  Google Scholar 

  15. Johari R, Tsitsiklis JN (2004) Efficiency loss in a network resource allocation game. Math Oper Res 29:407–435

    Article  MATH  MathSciNet  Google Scholar 

  16. Johari R, Tsitsiklis JN (2005) A game theoretic view of efficiency loss in resource allocation. In: Advances in control, communication networks, and transportation systems. Systems control found appl. Birkhäuser Boston, Boston, pp 203–223

    Chapter  Google Scholar 

  17. Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2:229–260

    Article  MATH  MathSciNet  Google Scholar 

  18. Lodi A, Malaguti E, Stier-Moses NE (2010) Efficient and fair routing for mesh networks. Math Program 124:285–316

    Article  MATH  MathSciNet  Google Scholar 

  19. Ma Z, Callaway D, Hiskens IA (2010) Decentralized charging control for large populations of plug-in electric vehicles. In: CDC. IEEE Press, New York, pp 206–212

    Google Scholar 

  20. Ma Z, Callaway D, Hiskens IA (2010) Decentralized charging control for large populations of plug-in electric vehicles: application of the nash certainty equivalence principle. In: CCA. IEEE Press, New York, pp 191–195

    Google Scholar 

  21. Meyn S (2007) Control techniques for complex networks, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Roughgarden T (2003) The price of anarchy is independent of the network topology. J Comput Syst Sci 67:341–364. Special issue on STOC2002 (Montreal, QC)

    Article  MATH  MathSciNet  Google Scholar 

  23. Roughgarden T, Tardos É (2002) How bad is selfish routing? J ACM 49:236–259 (electronic)

    Article  MathSciNet  Google Scholar 

  24. Schulz AS, Stier-Moses NE (2006) Efficiency and fairness of system-optimal routing with user constraints. Networks 48:223–234

    Article  MATH  MathSciNet  Google Scholar 

  25. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  Google Scholar 

  26. Strogatz SH, Mirollo RE (1991) Stability of incoherence in a population of coupled oscillators. J Stat Phys 63:613–635

    Article  MathSciNet  Google Scholar 

  27. Tembine H (2011) Risk-sensitive mean field stochastic games. In: CDC-ECE. IEEE Press, New York, pp 4264–4269

    Google Scholar 

  28. von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

  29. Weintraub GY, Benkard L, Roy BV (2006) Oblivious equilibrium: a mean field approximation for large-scale dynamic games. In: Advances in neural information processing systems, vol 18. MIT Press, Cambridge

    Google Scholar 

  30. Yin H, Mehta P, Meyn S, Shanbhag U (2011) On the efficiency of equilibria in mean-field oscillator games. In: American Control Conference (ACC), pp 5354–5359

    Google Scholar 

  31. Yin H, Mehta PG, Meyn SP, Shanbhag UV (2010) Synchronization of coupled oscillators is a game. In: Proc of 2010 American control conference, Baltimore, MD, pp 1783–1790

    Google Scholar 

  32. Yin H, Mehta PG, Meyn SP, Shanbhag UV (2011) Bifurcation analysis of a heterogeneous mean-field oscillator game model. In: IEEE conference on decision and control, pp 3895–3900

    Google Scholar 

  33. Yin H, Mehta PG, Meyn SP, Shanbhag UV (2012) Synchronization of coupled oscillators is a game. IEEE Trans Autom Control 57:920–935

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday V. Shanbhag.

Additional information

This research has been funded by DOE Award DE-SC0003879. A shortened version of this work appeared in the American Control Conference in 2011 [30].

Appendix

Appendix

1.1 A.1 Proof of Lemma 1

Proof

Under Assumption 2, Eq. (11b) can be written as

$$\begin{aligned} (\omega-a)\partial_{\theta}p = -\partial_{\theta}[pu] + \frac {\sigma^2}{2}\partial^2_{\theta\theta}p. \end{aligned}$$

Integrating both sides of the equation with respect to θ,

$$\begin{aligned} u = \frac{\sigma^2}{2}\frac{\partial_{\theta}p}{p} + (a-\omega) + \frac{K}{p}, \end{aligned}$$
(48)

where K is a function of ω and is obtained as follows. Integrating both sides of the resulting equation (48) from 0 to 2π with respect to θ again, we obtain

$$\begin{aligned} \int_0^{2\pi} u \,\mathrm{d} \theta= \int _0^{2\pi}\frac{\sigma ^2}{2}\partial_{\theta} \ln p \,\mathrm{d} \theta+ K\int_0^{2\pi} \frac{1}{p}\,\mathrm{d} \theta+ (a-\omega)2\pi. \end{aligned}$$

From the assumption that h (thus u) and p are 2π-periodic in θ,

$$\begin{aligned} 0 = 0 + K\int_0^{2\pi}\frac{1}{p}\, \mathrm{d} \theta+ (a-\omega )2\pi\quad \Rightarrow\quad K = \frac{(\omega-a)2\pi}{\int_0^{2\pi}\frac{1}{p}\,\mathrm{d} \theta}. \end{aligned}$$
(49)

Finally, we get the result (7) by substituting K in (49) back to (48). □

1.2 A.2 Proof of Lemma 2

We consider the functional I[v]=I 1[v]+I 2[v]+I 3[v] where

$$\begin{aligned} I_1[v] &= \int_0^{2\pi} \bar{c}v^2\,\mathrm{d} \theta, \\ I_2[v] &= \int_0^{2\pi} \biggl( \frac{R\sigma^4}{2}(\partial _{\theta}v)^2 - \lambda v^2 \biggr)\,\mathrm{d} \theta, \\ I_3[v] &= \int_0^{2\pi} \biggl( \frac{R}{2}(\omega-a)^2v^2 \biggl(1- \frac{2\pi}{v^2\int v^{-2}} \biggr)^2 \biggr)\,\mathrm{d} \theta, \end{aligned}$$

and derive its first variation. For I 1[v],

$$\begin{aligned} DI_1[v]\cdot v' = \int_0^{2\pi}2 \bar{c}v\cdot v'\,\mathrm{d} \theta. \end{aligned}$$
(50)

For I 2[v],

$$\begin{aligned} DI_2[v]\cdot v' = \int_0^{2\pi} { \bigl(-R\sigma^4\partial ^2_{\theta\theta}v \cdot v' - 2\lambda v\cdot v' \bigr)}\,\mathrm{d} \theta. \end{aligned}$$
(51)

A straightforward calculation gives

$$\begin{aligned} DI_3[v]\cdot v' &= \lim_{\epsilon\to0} \frac{I_3[v+\epsilon v'] - I_3[v]}{\epsilon} \\ &= \int_0^{2\pi} R(\omega-a)^2 \biggl(1- \biggl(\frac{2\pi}{v^2\int \frac{1}{v^2}} \biggr)^2 \biggr) v\cdot v' \,\mathrm{d} \theta. \end{aligned}$$
(52)

Using (50)–(52), we have obtain the nonlinear problem (15). Finally, (16) is the same constraint as (14).

1.3 A.3 Proof of Lemma 3

Proof

The proof of the first half is same as Lemma 2. It remains to show that \(\lambda^{*}(\omega,a) = \eta_{g}^{*}(\omega,a)\). Multiplying both sides of (15) with \(\frac {R\sigma^{4} v^{*}}{2}\) and integrating from 0 to 2π with respect to θ, we obtain

$$\begin{aligned} &\int_0^{2\pi} \biggl[ \frac{R\sigma^4}{2}v^* \partial^2_{\theta \theta}v^* + \bigl(\lambda^* - \bar{c}^*\bigr) \bigl(v^*\bigr)^2 \\ & \quad{} - \frac{R}{2}(\omega- a)^2 \biggl( 1 - \biggl( \frac{2\pi}{(v^*)^2\int(v^*)^{-2}} \biggr)^2 \biggr) \bigl(v^*\bigr)^2 \biggr] \,\mathrm{d} \theta= 0. \end{aligned}$$

Because \(\int_{0}^{2\pi} (v^{*})^{2} \,\mathrm{d} \theta= 1\),

$$\begin{aligned} \lambda^* &= \int_0^{2\pi} \biggl[ - \frac{R\sigma^4}{2}v^*\partial ^2_{\theta\theta} v^* + \bar{c}^* \bigl(v^*\bigr)^2 + \frac{R}{2}(\omega- a)^2 \biggl( 1 - \biggl(\frac{2\pi}{(v^*)^2\int(v^*)^{-2}} \biggr)^2 \biggr) \bigl(v^* \bigr)^2 \biggr] \,\mathrm{d} \theta \\ &= -\frac{R\sigma^4}{2}v^*\partial_{\theta}v^* |_0^{2\pi} + \int_0^{2\pi} \frac{R\sigma^4}{2}\bigl( \partial_{\theta}v^*\bigr)^2 \,\mathrm{d} \theta \\ &\quad\ {}+ \int_0^{2\pi} \biggl[\bar{c}^* \bigl(v^* \bigr)^2 + \frac{R}{2}(\omega- a)^2 \biggl( 1 - \biggl(\frac{2\pi}{(v^*)^2\int (v^*)^{-2}} \biggr)^2 \biggr) \bigl(v^* \bigr)^2 \biggr] \,\mathrm{d} \theta \\ &= \int_0^{2\pi} \biggl[ \frac{R\sigma^4}{2}\bigl( \partial_{\theta }v^*\bigr)^2 + \bar{c} ^* \bigl(v^* \bigr)^2 + \frac{R}{2}(\omega- a)^2 \biggl( 1 - \biggl(\frac{2\pi}{(v^*)^2\int (v^*)^{-2}} \biggr)^2 \biggr) \bigl(v^* \bigr)^2 \biggr] \,\mathrm{d} \theta \\ &= \int_0^{2\pi} \biggl[ \frac{R\sigma^4}{2}\bigl( \partial_{\theta }v^*\bigr)^2 + \bar{c} ^* \bigl(v^* \bigr)^2 + \frac{R}{2}(\omega- a)^2 \biggl( 1 - \frac{2\pi}{(v^*)^2\int (v^*)^{-2}} \biggr)^2 \bigl(v^*\bigr)^2 \biggr] \, \mathrm{d} \theta , \end{aligned}$$
(53)

where the second equality is obtained through integration by parts of the first term, and the third equality is obtained because v is periodic function with period 2π. From definition (13), the right-hand side of (53) is \(\eta_{g}^{*}(\omega,a)\). □

1.4 A.4 Proof of Proposition 1

Proof

(i) Let (h,p,η ) be a solution to the PDE (11a)–(11c). Then the optimal control is given by \(u^{*} = -\frac{1}{R}\partial_{\theta}h\). We have shown that u also satisfies (7). Therefore, we obtain

$$\begin{aligned} \partial_{\theta}h = -\frac{R\sigma^2}{2}\partial_{\theta}\ln p - R(a-\omega) \biggl(1 - \frac{2\pi}{p\int p^{-1}} \biggr). \end{aligned}$$
(54)

Taking partial derivatives with respect to θ on both sides of (54), we obtain

$$\begin{aligned} \partial^2_{\theta\theta}h = -\frac{R\sigma^2}{2}\frac{p\partial ^2_{\theta\theta}p - (\partial_{\theta} p)^2}{p^2} - R(a-\omega)\frac{2\pi}{p\int p^{-1}}\frac{\partial _{\theta}p}{p}. \end{aligned}$$
(55)

Let \(v = \sqrt{p}\), then

$$ \begin{aligned} \partial_{\theta}h &= - R\sigma^2 \frac{\partial_{\theta}v}{v} - R(a-\omega) \biggl(1 - \frac{2\pi}{v^2\int v^{-2}} \biggr), \\ \partial^2_{\theta\theta}h &= - R\sigma^2 \frac{\partial^2_{\theta \theta}v}{v} + R\sigma^2 \biggl(\frac{\partial_{\theta}v}{v} \biggr)^2 - 2R(a-\omega)\frac{2\pi}{v^2\int v^{-2}}\frac{\partial_{\theta}v}{v}. \end{aligned} $$
(56)

From the Assumption 2 and Eq. (11a),

$$\begin{aligned} (\omega-a)\partial_{\theta}h = \frac{1}{2R}(\partial_{\theta}h)^2 - \bar{c}+ \eta^* - \frac{\sigma^2}{2}\partial^2_{\theta\theta}h. \end{aligned}$$
(57)

Substituting (56) into (57), we obtain the left-hand side (LHS) of (57) as

$$\begin{aligned} -R\sigma^2(\omega-a)\frac{\partial_{\theta}v}{v} + R( \omega-a)^2 \biggl( 1- \frac{2\pi}{v^2\int v^{-2}} \biggr), \end{aligned}$$

and the right-hand side (RHS) of (57) as

$$\begin{aligned} \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} +\frac{R}{2}( \omega-a)^2 \biggl(1-\frac{2\pi}{v^2\int v^{-2}} \biggr)^2 - R \sigma^2(\omega-a)\frac{\partial_{\theta}v}{v} + \bigl(\eta^* - \bar{c}\bigr). \end{aligned}$$

So Eq. (57) becomes

$$\begin{aligned} 0 &= \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} +\frac{R}{2}( \omega-a)^2 \biggl(1-\frac{2\pi}{v^2\int v^{-2}} \biggr)^2 - R( \omega-a)^2 \biggl( 1- \frac{2\pi}{v^2\int v^{-2}} \biggr) + \bigl(\eta ^* - \bar{c}\bigr) \\ &= \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} -\frac{R}{2}( \omega-a)^2 \biggl(1-\frac{2\pi}{v^2\int v^{-2}} \biggr) \biggl(1+ \frac{2\pi}{v^2\int v^{-2}} \biggr) + \bigl(\eta^* - \bar{c}\bigr). \end{aligned}$$
(58)

Multiplying both sides of (58) with \(\frac{2v}{R\sigma^{4}}\), one obtains the nonlinear equation (15). Finally, (16) is just the constraint for density function p=v 2, and (17) is the same as (11c) under Assumption 2.

(ii) First multiplying both sides of (21) with \(\frac{p}{R}\) and do a partial derivative with respect to θ, one obtains

$$\begin{aligned} \partial_{\theta} \biggl[\frac{p}{R}(\partial_{\theta}h) \biggr]&= -\frac{\sigma^2}{2}\partial^2_{\theta\theta}p+ \partial_{\theta } \biggl[(\omega-a) \biggl( 1- \frac {2\pi}{p\int_0^{2\pi}p^{-1}\,\mathrm{d} \theta}\biggr)p \biggr] \\ &= -\frac{\sigma^2}{2}\partial^2_{\theta\theta}p+ (\omega -a) \partial_{\theta} \biggl[p-\frac {2\pi}{\int_0^{2\pi}p^{-1}\,\mathrm{d} \theta} \biggr] \\ &= -\frac{\sigma^2}{2}\partial^2_{\theta\theta}p+ (\omega -a) \partial_{\theta}p, \end{aligned}$$

which gives

$$\begin{aligned} (\omega-a)\partial_{\theta}p= \frac{1}{R}\partial_{\theta} \bigl[p(\partial_{\theta}h) \bigr] + \frac{\sigma^2}{2}\partial^2_{\theta\theta}p. \end{aligned}$$

Since p(θ,t;ω)=v 2(θat;ω),

$$\partial_{t}p + \omega\partial_{\theta}p = (\omega-a)\partial _{\theta}p= \frac{1}{R}\partial_{\theta} \bigl[p( \partial_{\theta}h) \bigr] + \frac{\sigma^2}{2}\partial^2_{\theta\theta}p, $$

which gives (11b).

Next, substituting p(θ,t;ω)=v 2(θat;ω) into (21), one obtains

$$\begin{aligned} \partial_{\theta}h &= - R\sigma^2\frac{\partial_{\theta}v}{v} + R( \omega-a) \biggl(1 - \frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr). \end{aligned}$$
(59)

So

$$\begin{aligned} \partial_{t}h +\omega\partial_{\theta}h &=(\omega-a)\partial _{\theta}h = - R\sigma^2(\omega-a) \frac{\partial_{\theta}v}{v} + R( \omega-a)^2 \biggl(1 - \frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr), \end{aligned}$$
(60)
$$\begin{aligned} (\partial_{\theta}h )^2 &= R^2\sigma^4 \biggl(\frac {\partial_{\theta} v}{v} \biggr)^2 + R^2( \omega-a)^2 \biggl(1-\frac{2\pi}{v^2\int_0^{2\pi}\,\mathrm{d} \theta } \biggr)^2 \\ &\quad\ {}- 2R^2\sigma^2(\omega- a)\frac{\partial_{\theta }v}{v} \biggl( 1 - \frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr), \end{aligned}$$
(61)
$$\begin{aligned} \partial^2_{\theta\theta}h &= -R\sigma^2 \frac{\partial^2_{\theta \theta}v}{v}+ R\sigma^2 \biggl(\frac {\partial_{\theta}v}{v} \biggr)^2 + 2 R(\omega-a) \frac{2\pi}{v^2\int_0^{2\pi} v^{-2}\,\mathrm{d} \theta} \frac{\partial_{\theta}v}{v}. \end{aligned}$$
(62)

Multiplying both sides of (61) with \(\frac{1}{2R}\), those of (62) with \(-\frac{\sigma^{2}}{2}\) and adding them together, one obtains

$$\begin{aligned} \frac{1}{2R} (\partial_{\theta}h )^2-\frac{\sigma ^2}{2} \partial^2_{\theta\theta}h &= \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} + \frac{R}{2}(\omega-a)^2 \biggl(1 - \frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta } \biggr)^2 - R\sigma^2(\omega-a)\frac{\partial_{\theta}v}{v}. \end{aligned}$$
(63)

Multiplying both sides of (15) with \(\frac{R\sigma^{4}}{2v}\), one obtains

$$\begin{aligned} \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} + \eta^* - \bar{c} -\frac{R}{2}( \omega-a)^2 \biggl(1 - \biggl(\frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr)^2 \biggr) = 0, \end{aligned}$$

which gives

$$\begin{aligned} \frac{R\sigma^4}{2}\frac{\partial^2_{\theta\theta}v}{v} &= - \bigl(\eta^* - \bar{c}\bigr) + \frac{R}{2}(\omega-a)^2 \biggl(1 - \biggl(\frac{2\pi}{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr)^2 \biggr). \end{aligned}$$
(64)

Substituting (64) into (63), one obtains

$$\begin{aligned} \frac{1}{2R} (\partial_{\theta}h )^2-\frac{\sigma ^2}{2} \partial^2_{\theta\theta}h &= -\bigl(\eta^* - \bar{c}\bigr) + R( \omega-a)^2 \biggl(1 - \frac{2\pi }{v^2\int_0^{2\pi}v^{-2}\,\mathrm{d} \theta} \biggr) - R \sigma^2(\omega-a) \frac{\partial_{\theta}v}{v}\\ &= -\bigl(\eta^* - \bar{c}\bigr) + \partial_{t}h + \omega \partial_{\theta}h, \end{aligned}$$

where the last equality comes from (60). Rearranging the last equation, one obtains

$$\begin{aligned} \partial_{t}h + \omega\partial_{\theta}h &= \frac{1}{2R} (\partial_{\theta}h )^2 - \bar{c}+ \eta^* -\frac{\sigma^2}{2} \partial^2_{\theta\theta}h, \end{aligned}$$
(65)

which gives (11a). Finally, (11c) is obtained from (17) under Assumption 2. □

1.5 A.5 Proof of Lemma 4

Proof

The Euler–Lagrange equation (24) is obtained from considering the first variation of (22)–(23), which can be derived in a fashion similar to that in Lemma 2. Comparing equation (22) with (13), the only difference in the integrand is the first term: the latter is \(\bar{c}v^{2}\) and the former is \(\mathcal{C} [v] v^{2}\). So we derive its first variation here as

$$\begin{aligned} DI_1[v]\cdot v' &= \int_{\varOmega}\int _0^{2\pi}2\mathcal{C}[v] v\cdot v'\, \mathrm{d} \theta g(\omega)\,\mathrm{d} \omega \end{aligned}$$
(66)
$$\begin{aligned} &\quad\ {}+ \int_{\varOmega}\int_0^{2\pi} \biggl(v^2(\theta;\omega)\int_{\varOmega}\int _0^{2\pi}c^\bullet(\theta-\vartheta) 2 v \bigl(\vartheta; \omega'\bigr) \\ &\quad\ {}\cdot v'\bigl(\vartheta; \omega'\bigr) \,\mathrm{d} \vartheta g\bigl(\omega' \bigr)\,\mathrm{d} \omega' \biggr) \,\mathrm{d} \theta g(\omega )\, \mathrm{d} \omega \end{aligned}$$
(67)
$$\begin{aligned} &=:DI_{11}[v] \cdot v' + DI_{12}[v] \cdot v'. \end{aligned}$$
(68)

Note the integrand of (66) is same as that of (50). Since c (⋅) is even, (67) can be written as

$$\begin{aligned} DI_{12}[v]\cdot v' &= \int_{\varOmega}\int _0^{2\pi} \biggl(v^2(\theta ;\omega)\int _{\varOmega}\int_0^{2\pi}c^\bullet( \vartheta-\theta) 2 v\bigl(\vartheta; \omega'\bigr) \\ &\quad\ {}\cdot v'\bigl(\vartheta;\omega'\bigr)\,\mathrm{d} \vartheta g\bigl(\omega'\bigr)\,\mathrm{d} \omega' \biggr)\, \mathrm{d} \theta g(\omega)\,\mathrm{d} \omega \end{aligned}$$
(69)
$$\begin{aligned} &= \int_{\varOmega}\int_0^{2\pi} \biggl(v^2\bigl(\vartheta;\omega'\bigr)\int _{\varOmega}\int_0^{2\pi}c^\bullet( \theta-\vartheta) 2 v(\theta; \omega) \\ &\quad\ {}\cdot v'(\theta;\omega)\, \mathrm{d} \theta g(\omega)\,\mathrm{d} \omega \biggr)\,\mathrm{d} \vartheta g \bigl(\omega'\bigr)\,\mathrm{d} \omega ' \end{aligned}$$
(70)
$$\begin{aligned} &= \int_{\varOmega}\int_0^{2\pi} \biggl(\int_{\varOmega}\int_0^{2\pi }c^\bullet( \theta-\vartheta) v^2\bigl(\vartheta;\omega'\bigr) \, \mathrm{d} \vartheta g\bigl(\omega'\bigr)\,\mathrm{d} \omega' \biggr) 2 v(\theta; \omega) \\ &\quad\ {}\cdot v'(\theta; \omega)\,\mathrm{d} \theta g(\omega)\,\mathrm{d} \omega \end{aligned}$$
(71)
$$\begin{aligned} &=\int_{\varOmega}\int_0^{2\pi} \mathcal{C}[v](\theta) 2 v(\theta ;\omega )\cdot v'(\theta;\omega)\, \mathrm{d} \theta g(\omega)\,\mathrm{d} \omega = DI_{11}[v] \cdot v', \end{aligned}$$
(72)

where (70) is obtained by switching variable θ with ϑ and ω with ω′ in (69), (71) is obtained by rearrangement of (70), and (72) is obtained from definition of \(\mathcal{C}[v]\) in (17). So we obtain

$$\begin{aligned} DI_1[v] \cdot v'= \int_{\varOmega}\int _0^{2\pi}4\mathcal{C}[v] v\cdot v'\, \mathrm{d} \theta g(\omega)\,\mathrm{d} \omega, \end{aligned}$$

where the integrand is as twice as that in (50), which leads to the difference between (24) and (15).

Multiplying both sides of (24) by \(\frac{\sigma^{4} Rv}{2}\) and integrating from 0 to 2π, we obtain the following:

$$\begin{aligned} \lambda^*(\omega,a) &= \int_0^{2\pi} \frac{R\sigma ^4}{2}\bigl(\partial_{\theta}v^*\bigr)^2 + 2 \mathcal{C}\bigl[v^*\bigr] \bigl(v^*\bigr)^2 \\ &\quad\ {}+ \frac{R}{2}( \omega-a)^2 \biggl( 1 - \biggl(\frac{2\pi }{(v^*)^2\int (v^*)^{-2}} \biggr)^2 \biggr) \bigl(v^*\bigr)^2 \,\mathrm{d} \theta \\ &= \int_0^{2\pi} \frac{R\sigma^4}{2}\bigl( \partial_{\theta }v^*\bigr)^2 + 2 \mathcal{C}\bigl[v^*\bigr] \bigl(v^*\bigr)^2 + \frac{R}{2}(\omega-a)^2 \biggl( 1 - \frac{2\pi}{(v^*)^2\int (v^*)^{-2}} \biggr)^2 \bigl(v^*\bigr)^2 \, \mathrm{d} \theta. \end{aligned}$$

Taking expectations on both sides, we obtain the result (26). □

1.6 A.6 Proof of Lemma 5

Equation (32) is rewritten as

$$ \sigma^4 R \partial^2_{\theta\theta}v + 2 \biggl( \lambda- \alpha \int_0^{2\pi} c^\bullet( \theta,\vartheta) v^2(\vartheta) \,\mathrm{d} \vartheta \biggr)v = 0. $$
(73)

We substitute the expansion (36) into (73) and the normalization condition ∫v 2 dθ=1, and collect the terms according to different orders of x.

At O(1), we have the steady state solution

$$\begin{aligned} v_0 = \frac{1}{\sqrt{2\pi}},\quad\quad\lambda_0 = \alpha C_0^\bullet= \frac{\alpha}{2\pi}\int_0^{2\pi} c^\bullet(\theta-\vartheta) \,\mathrm{d} \vartheta. \end{aligned}$$

At O(x),

$$\begin{aligned} 0&=\sigma^4r_0 \partial^2_{\theta\theta}v_1 + 2v_0 \biggl( \lambda _1 - \alpha\int _0^{2\pi}c^\bullet(\theta- \vartheta)2v_0v_1(\vartheta) \,\mathrm{d} \vartheta \biggr), \end{aligned}$$
(74)
$$\begin{aligned} 0&=\int_0^{2\pi} v_1(\theta)\, \mathrm{d} \theta. \end{aligned}$$
(75)

Suppose we have the Fourier expansion for the function v 1(θ)

$$\begin{aligned} v_1(\theta) = \sum_k v_{1k} e^{ik\theta}. \end{aligned}$$
(76)

Substitute (76) into (75),

$$\begin{aligned} \int_0^{2\pi} v_{10}\,\mathrm{d} \theta= 0 \quad\Rightarrow\quad v_{10} = 0. \end{aligned}$$

Substitute (76) into (74) to obtain

$$\begin{aligned} \sum_{k} \bigl( - k^2 \sigma^4 r_0 - 8\alpha\pi v_0^2 C_k^\bullet \bigr) v_{1k} e^{ik\theta} + 2v_0\lambda_1 = 0. \end{aligned}$$

We collect the terms with respect to e ikθ. When k=0,

$$\begin{aligned} - 8\alpha\pi v_0^2 C_0^\bullet v_{10} + 2v_0 \lambda_1 = 0 \quad \Rightarrow \quad \lambda_1 = 0 \text{ since } v_{10} = 0. \end{aligned}$$

When k=1, \((-\sigma^{4}r_{0} - 8\alpha\pi v_{0}^{2}C_{1}^{\bullet}) v_{11} = 0\). If v 11≠0,

$$r_0 = -\frac{8\alpha\pi v_0^2 C_1^\bullet}{\sigma^4} = \frac{\alpha}{2\sigma^4} = R_c^\alpha. $$

When k≥2, \(C_{k}^{\bullet}= 0\),

$$-k^2\sigma^4r_0 v_{1k} = 0 \quad \Rightarrow\quad v_{1k} = 0. $$

When k<0, it is similar as k>0. The existence of bifurcation implies v 1≠0, so \(v_{11} = \bar{v}_{1,-1} \neq0\). So we obtain

$$\begin{aligned} v_1 &= v_{11}e^{i\theta} + \mathrm{c.c} = 2|v_{11}|\cos(\theta+ \angle v_{11}), \end{aligned}$$
(77)

where |v 11| and ∠v 11 are the amplitude and phase angle, respectively, of v 11.

At O(x 2),

$$\begin{aligned} &\sigma^4r_0 \partial^2_{\theta\theta}v_2 + \sigma^4r_1 \partial ^2_{\theta\theta}v_1 \\ &\quad{}+ 2 v_0 \biggl(\lambda_2 - \alpha \int _0^{2\pi} c^\bullet(\theta-\vartheta) \bigl(v_1^2(\vartheta) + 2v_0 v_2( \vartheta)\bigr)\,\mathrm{d} \vartheta \biggr) \\ &\quad{}- 4\alpha v_0v_1(\theta)\int_0^{2\pi} c^\bullet(\theta-\vartheta )v_1(\vartheta) \,\mathrm{d} \vartheta= 0, \end{aligned}$$
(78)
$$\begin{aligned} &\int_0^{2\pi}v_1^2(\theta) + 2v_0v_2(\theta) \,\mathrm{d} \theta= 0. \end{aligned}$$
(79)

Suppose v 2(θ) also has the Fourier expansion

$$\begin{aligned} v_2(\theta) = \sum_k v_{2k} e^{ik\theta}. \end{aligned}$$
(80)

Substitute (76) and (80) into (79),

$$\begin{aligned} v_{11}v_{1,-1} + v_0 v_{2,0} = 0, \quad\text{or}\quad v_{2,0} = - \frac{v_{11}v_{1,-1}}{v_0}. \end{aligned}$$
(81)

Substitute (76) and (80) into (78),

We collect the terms of e ikθ for different values of k. When k=0,

$$\begin{aligned} 0 & = -8\alpha\pi v_0^2 C_0^\bullet v_{20} - 4\alpha\pi v_0 C_0^\bullet(2v_{11}v_{1,-1}) \\ &\quad\ {}- 8\alpha\pi v_0 \bigl(v_{11}v_{1,-1}C_{-1}^\bullet + v_{1,-1}v_{11}C_1^\bullet \bigr) + 2v_0\lambda_2, \\ &\quad\Rightarrow\quad -8\alpha\pi v_0^2 C_0^\bullet v_{2,0} + 2v_0\lambda_2 =0, \\ &\quad\Rightarrow\quad \lambda_2 = \frac{8\alpha\pi v_0^2 C_0^\bullet v_{2,0}}{2v_0} = 4\alpha\pi v_0 C_0^\bullet \biggl(-\frac{v_{11}v_{1,-1}}{v_0} \biggr) \\ & = -4\alpha\pi C_0^\bullet v_{11}v_{1,-1} = -\alpha\pi v_{11} v_{1,-1}. \end{aligned}$$

When k=1, −σ 4 r 1 v 11=0,⇒r 1=0. When k=2,

$$\begin{aligned} -4\sigma^4 r_0 v_{2,2} - 8\alpha\pi v_0 v_{11}^2 C_1^\bullet= 0,\quad \Rightarrow\quad v_{2,2} &= -\frac{2\alpha\pi v_0}{\sigma^4 r_0} v_{11}^2C_1^\bullet \\ &= \frac{1}{2}\pi v_0 v_{11}^2. \end{aligned}$$

When k>2, v 2k =0. For k<0, it is similar. So we obtain

$$\begin{aligned} v_2 &= \frac{1}{2} v_{20} + v_{21}e^{i\theta} + v_{22}e^{i2\theta} + \mathrm{c.c} \\ &= v_{20} + v_0\pi|v_{11}|^2\cos2( \theta+ \angle v_{11}) + 2|v_{21}|\cos(\theta+ \angle v_{21}) \end{aligned}$$
(82)

At O(x 3),

$$\begin{aligned} &\sigma^4r_0 \partial^2_{\theta\theta}v_3 + \sigma^4 r_2 \partial ^2_{\theta\theta}v_1 \\ &\quad{} + 2v_0 \biggl( \lambda_3 - \alpha\int c^\bullet( \theta- \vartheta ) \bigl(2v_0 v_3(\vartheta) + 2v_1(\vartheta) v_2(\vartheta)\bigr)\,\mathrm{d} \vartheta \biggr) \\ &\quad{}+ 2v_1(\theta) \biggl( \lambda_2 - \alpha\int c^\bullet(\theta- \vartheta) \bigl( v_1^2(\theta) + 2v_0 v_2(\vartheta)\bigr)\,\mathrm{d} \vartheta \biggr) \\ &\quad{}- 4\alpha v_0 v_2(\theta)\int c^\bullet(\theta- \vartheta)v_1(\vartheta)\,\mathrm{d} \vartheta= 0, \end{aligned}$$
(83)
$$\begin{aligned} &\int v_0 v_3(\theta) + v_1( \theta)v_2(\theta)\,\mathrm{d} \theta= 0. \end{aligned}$$
(84)

Suppose v 3(θ) has the Fourier expansion

$$\begin{aligned} v_3(\theta) = \sum_k v_{3k}e^{ik\theta}. \end{aligned}$$
(85)

Substitute (76), (80), and (85) into (84),

$$\begin{aligned} v_0 v_{3,0} + v_{11}v_{2,-1} + v_{1,-1}v_{2,1} = 0. \end{aligned}$$

Substitute (76), (80), and (85) into (84),

$$\begin{aligned} &\sum_{k} \biggl\{ \bigl(-k^2\bigr) \sigma^4r_0 v_{3k} - \sigma^4r_2 k^2 v_{1k} + 2\lambda_2 v_{1k} \\ &\quad{}- 8\alpha\pi v_0 C_k^\bullet \biggl(\sum _{m+l=k} v_{1m}v_{2l} + v_0v_{3k} \biggr) \\ &\quad{}- 4\alpha\pi\sum_{m+l = k}v_{1m} C_l^\bullet \biggl(\sum_{a+b=l} v_{1a}v_{1b} + 2v_0v_{2l} \biggr) \\ &\quad{}- 8\alpha\pi v_0\sum_{m+l=k}v_{2m}C_l^\bullet v_{1l} \biggr\} e^{ik\theta} + 2v_0 \lambda_3 = 0. \end{aligned}$$
(86)

We collect the terms of e ikθ for different values of k. When k=0,

$$\begin{aligned} 0 &= - 8\alpha\pi v_0 C_0^\bullet(v_{11}v_{2,-1} + v_{1,-1}v_{21} + v_0v_{30}) \\ &\quad\ {}- 4\alpha\pi \bigl(v_{11} C_{-1}^\bullet(2v_0 v_{2,-1}) + v_{1,-1}C_1^\bullet 2v_0v_{21} \bigr) \\ &\quad\ {}- 8\alpha\pi v_0 (v_{21}C_{-1}^\bullet v_{1,-1} + v_{2,-1}C_1^\bullet v_{11} + 2v_0\lambda_3, \\ &\quad\Rightarrow\quad \lambda_3 = \alpha\pi( v_{11}v_{2,-1} + v_{1,-1}v_{2,1}). \end{aligned}$$

When k=1,

$$\begin{aligned} 0 &= -\sigma^4r_0 v_{31} - \sigma^4 r_2 v_{11} + 2\lambda_2 v_{11} \\ &\quad\ {}- 8\alpha\pi v_0\bigl(2C_1^\bullet v_{11}v_{20} + 2C_1^\bullet v_{1,-1}v_{22} + C_1^\bullet v_0 v_{31}\bigr), \\ &\quad\Rightarrow\quad r_2 = -\frac{7\alpha}{2\sigma^4}\pi v_{11}v_{1,-1}. \end{aligned}$$

In all, we obtain the formula

$$\begin{aligned} R &= r_0 + x^2 r_2 + o\bigl(x^2 \bigr) = r_0 - \frac{7\alpha}{2\sigma^4}\pi |v_{11}|^2x^2 + o\bigl(x^2\bigr), \end{aligned}$$
(87)
$$\begin{aligned} \lambda&= \lambda_0 + x^2 \lambda_2 + o \bigl(x^2\bigr) = \lambda_0 - \alpha\pi|v_{11}|^2x^2 + o\bigl(x^2\bigr), \end{aligned}$$
(88)
$$\begin{aligned} v &= v_0 + x v_1 + x^2 v_2 + o \bigl(x^2\bigr) \\ &= v_0 + x|v_{11}|2\cos(\theta+ \angle v_{11}) + x^2\bigl(-\sqrt{2\pi}|v_{11}|^2 \\ &\quad\ {}+ \pi v_0|v_{11}|^2\cos2(\theta+\angle v_{11}) + 2|v_{21}|\cos(\theta+\angle v_{11}) \bigr) + o\bigl(x^2\bigr) \\ &= v_0 + 2\cos(\theta+ \angle v_{11})|v_{11}|x \\ &\quad\ {}+ \bigl(-\sqrt{2\pi} + v_0\pi\cos2(\theta+ \angle v_{11}) \bigr)|v_{11}|^2x^2 + o \bigl(x^2\bigr). \end{aligned}$$
(89)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Mehta, P.G., Meyn, S.P. et al. On the Efficiency of Equilibria in Mean-Field Oscillator Games. Dyn Games Appl 4, 177–207 (2014). https://doi.org/10.1007/s13235-013-0100-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0100-0

Keywords

Navigation