Skip to main content
Log in

Conditions for Cooperation to be More Abundant than Defection in a Hierarchically Structured Population

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We study conditions for weak selection to favor tit-for-tat (TFT) over AllD in a repeated Prisoner’s Dilemma game played in a finite population subdivided into three subpopulations under the assumption of cyclic dominance in asymmetric interactions. Assuming parent-independent mutation and uniform migration, we show that TFT is more abundant that AllD in the stationary state if the defection cost incurred by individuals in interaction with dominant defecting individuals exceeds some threshold value. This threshold value decreases as the number of repetitions of the game, the population size, or the mutation rate increases, but increases as the migration rate increases. The same conclusions hold in the case of linear dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antal T, Nowak MA, Traulsen A (2009) Strategy abundance in \(2\times 2\) games for arbitrary mutation rates. J Theor Biol 257:340–344

    Article  MathSciNet  Google Scholar 

  2. Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009) Mutation-selection equilibrium in games with multiple strategies. J Theor Biol 258:614–622

    Article  MathSciNet  Google Scholar 

  3. Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolutionary game dynamics in phenotype space. Proc Natl Acad Sci USA 106:8597–8600

    Article  Google Scholar 

  4. Axelrod RM (1984) The evolution of cooperation. Basic Books, New York

    Google Scholar 

  5. Axelrod RM, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  MATH  MathSciNet  Google Scholar 

  6. Eshel I (1996) On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J Math Biol 34:485–510

    Article  MATH  Google Scholar 

  7. Fudenberg D, Imhof LA (2006) Imitation processes with small mutations. J Econ Theory 131:251–262

  8. Fudenberg D, Nowak MA, Taylor C, Imhof LA (2006) Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor Popul Biol 70:352–363

  9. Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge

  10. Hamilton WD (1964) The genetical evolution of social behaviour. I and II. J Theor Biol 7:1–52

    Article  Google Scholar 

  11. Hammerstein P (1981) The role of asymmetries in animal contests. Anim Behav 29:578–581

    Article  Google Scholar 

  12. Hauert C, Doebeli M (2004) Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428:643–646

    Article  Google Scholar 

  13. Hilbe C (2011) Local replicator dynamics: a simple link between deterministic and stochastic models of evolutionary game theory. Bull Math Biol 73:2068–2087

    Article  MATH  MathSciNet  Google Scholar 

  14. Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Amer Math Soc 40:479–519

    Article  MATH  MathSciNet  Google Scholar 

  16. Hofbauer J, Schuster P, Sigmund K (1979) A note on evolutionary stable strategies and games dynamics. J Theor Biol 81:609–612

    Article  MathSciNet  Google Scholar 

  17. Imhof LA, Nowak MA (2006) Evolutionary game dynamics in a Wright–Fisher process. J Math Biol 52:667–681

    Article  MATH  MathSciNet  Google Scholar 

  18. Ladret V, Lessard S (2007) Fixation probability for a beneficial allele and a mutant strategy in a linear game under weak selection in a finite island model. Theor Popul Biol 72:409–425

    Article  MATH  Google Scholar 

  19. Ladret V, Lessard S (2008) Evolutionary game dynamics in a finite asymmetric two-deme population and emergence of cooperation. J Theor Biol 255:137–151

    Article  MathSciNet  Google Scholar 

  20. Lessard S (2005) Long-term stability from fixation probabilities in finite populations: new perspectives for ESS theory. Theor Popul Biol 68:19–27

    Article  MATH  Google Scholar 

  21. Lessard S (2007) Cooperation is less likely to evolve in a finite population with a highly skewed distribution of family size. Proc R Soc B 274:1861–1865

    Article  Google Scholar 

  22. Lessard S (2011a) Effective game matrix and inclusive payoff in group-structured populations. Dyn Games Appl 1:301–318

    Article  MATH  MathSciNet  Google Scholar 

  23. Lessard S (2011b) Evolutionary game dynamics. Am Math Soc 69:143–171

    MathSciNet  Google Scholar 

  24. Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54:721–744

    Article  MATH  MathSciNet  Google Scholar 

  25. Lessard S, Lahaie P (2009) Fixation probability with multiple alleles and projected average allelic effect on selection. Theor Popul Biol 75:266–277

    Article  MATH  Google Scholar 

  26. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Article  Google Scholar 

  28. Nash J (1951) Non-cooperative games and spatial chaos. Ann Math 54:286–295

    Article  MATH  MathSciNet  Google Scholar 

  29. Nowak MA (2006a) Evolutionary dynamics. Harvard University Press, Cambridge

    MATH  Google Scholar 

  30. Nowak MA (2006b) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  Google Scholar 

  31. Nowak MA, May R (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Article  Google Scholar 

  32. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    Article  Google Scholar 

  33. Nowak MA, Sigmund K (2007) How populations cohere: five rules for cooperation. In Theoretical Ecology, Third Edition. Oxford Press, 7–16.

  34. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Phil Trans R Soc B 365:19–30

    Article  Google Scholar 

  35. Ohtsuki H, Nowak MA (2006a) Evolutionary games on cycles. Proc R Soc B 273:2249–2256

    Article  Google Scholar 

  36. Ohtsuki H, Nowak MA (2006b) The replicator equation on graphs. J Theor Biol 243:86–97

    Article  MathSciNet  Google Scholar 

  37. Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Article  Google Scholar 

  38. Ohtsuki H, Pacheco J, Nowak MA (2007) Evolutionary graph theory: breaking the symmetry between interaction and replacement. J Theor Biol 246:681–694

    Article  MathSciNet  Google Scholar 

  39. Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge

    MATH  Google Scholar 

  40. Rousset F (2003) A minimal derivation of convergence stability measures. J Theor Biol 221:665–668

    Article  Google Scholar 

  41. Rousset F (2006) Separation of time scales, fixation probabilities and convergence to evolutionarily stable states under isolation by distance. Theor Popul Biol 69:165–179

    Article  MATH  Google Scholar 

  42. Rousset F, Billiard S (2000) A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J Evol Biol 13:814–825

    Article  Google Scholar 

  43. Tao Y, Xu JJ, Li C, Cressman R (2013) Dominance hierarchies induce a population’s full cooperation. Submitted to games. [Preprint]

  44. Tarnita CE, Antal T, Nowak MA (2009) Mutation-selection equilibrium in games with mixed strategies. J Theor Biol 261:50–57

    Article  MathSciNet  Google Scholar 

  45. Tarnita CE, Antal T, Ohtsuki H, Nowak MA (2009) Evolutionary dynamics in set structured populations. Proc Natl Acad Sci USA 106:8601–8604

    Article  Google Scholar 

  46. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259:570–581

    Article  MathSciNet  Google Scholar 

  47. Tarnita CE, Wage N, Nowak MA (2011) Multiple strategies in structured populations. Proc Natl Acad Sci USA 108:2334–2337

    Article  Google Scholar 

  48. Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644

    Article  MathSciNet  Google Scholar 

  49. Taylor PD, Day T, Wild G (2007) Evolution of cooperation in a finite homogeneous graph. Nature 66:1621–1644

    Google Scholar 

  50. Taylor PD, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MATH  MathSciNet  Google Scholar 

  51. Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  52. Zeeman EC (1980) Population dynamics from game theory. In: Proceedings of International Conference on Global Theory of Dynamical Systems (eds Nitecki ZH and Robinson RC) New York: Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Lessard.

Appendix: Model of Linear Dominance

Appendix: Model of Linear Dominance

In this section, we consider \(m\) rounds of the Prisoner’s Dilemma played between individuals chosen at random in three subpopulations of the same finite size \(N\) represented by \(S_1,\) \(S_2\), and \(S_3\) under the assumption of linear hierarchy: an individual in \(S_1\) dominates an individual in \(S_2\) and in \(S_3\), while an individual in \(S_2\) dominates an individual in \(S_3\). With respect to the strategies TFT and AllD, the payoff matrices \(A_{i,j}\) for an individual in \(S_i\) in interaction with an individual in \(S_j\), for \(i,j=1, 2, 3\), are given by

$$\begin{aligned} A_{1,1}=A_{2,2}=A_{3,3}=A_{1,2}=A_{1,3}=A_{2,3}=\begin{pmatrix} m(b-c) &{} -c \\ b &{} 0 \end{pmatrix}, \end{aligned}$$
$$\begin{aligned} A_{2,1}=A_{3,1}=A_{3,2}=\begin{pmatrix} m(b-c) &{} -c-(m-1)\beta \\ b-(m-1)\beta &{} -m\beta \end{pmatrix}. \end{aligned}$$

The expected payoffs \(w_1^{(i)}\) and \(w_2^{(i)}\) to TFT and AllD, respectively, in subpopulation \(S_i\), for \(i=1,2,3\), are then given by

$$\begin{aligned} w_1^{(1)}&= \frac{3N}{3N-1}\Big [m x(b-c)-\frac{m(b-c)}{3N}-(1-x)c\Big ],\\ w_1^{(2)}&= \frac{3N}{3N-1}\Big [m x(b-c)-\frac{m(b-c)}{3N}-(1-x)c-\frac{1}{3}(1-x_1)(m-1)\beta \Big ],\\ w_1^{(3)}&= \frac{3N}{3N-1}\Big [m x(b-c)-\frac{m(b-c)}{3N}-(1-x)c-\frac{1}{3}(2-x_1-x_2)(m-1)\beta \Big ],\\ w_2^{(1)}&= \frac{3N}{3N-1}xb,\\ w_2^{(2)}&= \frac{3N}{3N-1}\Big [xb-\frac{1}{3}(m-x_1)\beta \Big ],\\ w_2^{(3)}&= \frac{3N}{3N-1}\Big [xb-\frac{1}{3}(m-x_1)\beta -\frac{1}{3}(m-x_2)\beta \Big ]. \end{aligned}$$

These expected payoffs can be expressed in the form:

$$\begin{aligned} w_1^{(i)}=\frac{3N}{3N-1}\Bigg [m x(b-c)-\frac{m(b-c)}{3N}-(1-x)c-\frac{1}{3}\sum _{l<i}(1-x_l)(m-1)\beta \Bigg ], \end{aligned}$$
(38)

and

$$\begin{aligned} w_2^{(i)}=\frac{3N}{3N-1}\Bigg [xb-\frac{1}{3}\sum _{l<i}(m-x_l)\beta \Bigg ], \end{aligned}$$
(39)

for \(i=1,2,3\). This yields differences in the form:

$$\begin{aligned}&w_{1}^{(i)}-w_{2}^{(j)}=\frac{3N}{3N-1}\Bigg \{(m-1)x(b-c)-\Bigg [\frac{m}{3N}(b-c)+c\Bigg ]\\&\quad + \frac{1}{3}\sum _{l<j}(m-x_l)\beta -\frac{1}{3}\sum _{l<i}(1-x_l)(m-1)\beta \Bigg \},\nonumber \end{aligned}$$

for \(i,j=1,2,3\).

Plugging these expressions into (13) for the conditional expected change in frequency of TFT in the whole population given an intensity of selection \(\delta > 0\) and no mutation, which remains valid under linear hierarchy, leads to

$$\begin{aligned}&{\mathbb {E}}_{\delta }[\Delta X_{\mathrm {sel}}|\mathbf {X}=\mathbf {x}] =\frac{\delta (m-1)}{3(3N-1)}\Bigg \{(1-v)\sum _{i=1}^3 x_i(1-x_i)x+ \frac{v}{2}\sum _{i\ne j=1}^3x_i(1-x_j)x\Bigg \}(b-c)\\&\quad -\frac{\delta }{3(3N-1)}\Bigg \{(1-v)\sum _{i=1}^3 x_i(1-x_i)+\frac{v}{2}\sum _{i\ne j=1}^3x_i(1-x_j)\Bigg \}\Bigg [\frac{m}{3N}(b-c)+c\Bigg ]\\&\quad +\frac{\delta }{9(3N-1)}\Bigg \{(1-v)\sum _{1\le l<i\le 3}x_i(1-x_i)(m-x_l)\\&\quad +\frac{v}{2}\sum _{1\le l<j\le 3}\sum _{^{i=1}_{i\ne j}}^3x_i(1-x_j)(m-x_l)-(1-v)\sum _{1\le l<i\le 3}x_i(1-x_i)(m-1)(1-x_l)\\&\quad -\frac{v}{2}\sum _{1\le l<i\le 3}\sum _{^{j=1}_{j\ne i}}^3x_i(1-x_j)(m-1)(1-x_l)\Bigg \}\beta +o(\delta ). \end{aligned}$$

Taking the expected value in the stationary state gives

$$\begin{aligned} (3N-1){\mathbb {E}}_{\delta }[\Delta X_{\mathrm {sel}}]=\frac{\delta }{3}\Bigg \{\Bigg (M'_{1}-\frac{mM'_2}{3N}\Bigg )(b-c)-M'_2c+M'_3\beta \Bigg \}+o(\delta ), \end{aligned}$$
(40)

where

$$\begin{aligned} M'_{1}&= (m-1)\Bigg \{(1-v)\sum _{i=1}^3 {\mathbb {E}}_0\left[ x_i(1-x_i)x\right] +\frac{v}{2}\sum _{i\ne j=1}^3{\mathbb {E}}_0[x_i(1-x_j)x]\Bigg \},\\ M'_{2}&= (1-v)\sum _{i=1}^3 {\mathbb {E}}_0[x_i(1-x_i)]+\frac{v}{2}\sum _{i\ne j=1}^3{\mathbb {E}}_0[x_i(1-x_j)],\\ M'_{3}&= \frac{(1-v)}{3}\sum _{1\le l<i\le 3}{\mathbb {E}}_0[ x_i(1-x_i)(m-x_l)]+\frac{v}{6}\sum _{1\le l<j\le 3}\sum _{^{i=1}_{i\ne j}}^3{\mathbb {E}}_0[x_i(1-x_j)(m-x_l)]\\&\quad -\frac{(m-1)}{3}\\&\quad \times \Bigg \{(1-v)\sum _{1\le l<i\le 3} {\mathbb {E}}_0[x_i(1-x_i)(1-x_l)]+\frac{v}{2}\sum _{1\le l<i\le 3}\sum _{^{j=1}_{j\ne i}}^3{\mathbb {E}}_0[x_i(1-x_j)(1-x_l)]\Bigg \}. \end{aligned}$$

Comparing with (15), (16), and (17), we note that \(M'_1=M_1\) and \(M'_2=M_2\). Moreover, using the symmetry of the model in the neutral case, we obtain that

$$\begin{aligned} M'_3=M_3&= (1-v)E_0[ x_1(1-x_1)(m-x_2)]\\&+\frac{v}{2}\Bigg \{E_0[ x_1(1-x_2)(m-x_1)]+E_0[ x_1(1-x_2)(m-x_3)]\Bigg \} \\&-(1-v)(m-1)E_0[ x_1(1-x_1)(1-x_2)]-\frac{v}{2}\Bigg \{E_0[ x_1(1-x_2)^2]+E_0[ x_1(1-x_2)(1-x_3)]\Bigg \}. \end{aligned}$$

Therefore, the sufficient condition (21) for weak selection to favor TFT in the case of cyclic hierarchy is valid as well in the case of linear hierarchy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroumi, D., Lessard, S. Conditions for Cooperation to be More Abundant than Defection in a Hierarchically Structured Population. Dyn Games Appl 5, 239–262 (2015). https://doi.org/10.1007/s13235-014-0114-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-014-0114-2

Keywords

Navigation