Skip to main content
Log in

Bimatrix Replicator Dynamics with Periodic Impulses

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the bimatrix replicator dynamics with periodic impulses. In biological system, impulsive perturbations may due to the occurrence of an unfavorable physical environment, or due to the seasonal life history effects in the physiological and reproductive mechanisms of the population. We show that impulsive perturbations can lead to complicated dynamical behaviors. On the one hand, the system can have multiple \(\tau \)-periodic solutions, where the lower bound of the number of solutions is increasing linearly in the impulsive period \(\tau \). On the other hand, for shorter impulsive period, we provide a differential approximation for the impulsive dynamical system. By analyzing the resulting differential dynamics, we show that the interior equilibrium (which corresponds to a \(\tau \)-periodic solution) must be globally stable if it exists. Furthermore, when the impulsive effect is weak, all interior trajectories of the impulsive dynamics evolve to a small neighborhood of the interior equilibrium of the bimatrix replicator dynamics. In summary, longer impulsive period causes an increase in the complexity of the evolutionary process and shorter period promotes evolutionary stability of the interior equilibrium where multiple strategies can coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Angelova J, Dishliev A (2000) Optimization problems for one-impulsive models from population dynamics. Nonlinear Anal 39:483–497

    MathSciNet  MATH  Google Scholar 

  2. Bainov D, Simeonov P (1993) Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, New York

    MATH  Google Scholar 

  3. Ballinger G, Liu X (1997) Permanence of population growth models with impulsive effects. Math Comput Modelling 26:59–72

    MathSciNet  MATH  Google Scholar 

  4. Binmore K, Samuelson L (2001) Can mixed strategies be stable in asymmetric games? J Theor Biol 210(1):1–14

    Google Scholar 

  5. Broom M, Cannings C, Vickers GT (1997) A sequential-arrivals model of territory acquisition. J Theor Biol 189(3):257–272

    Google Scholar 

  6. Broom M, Cannings C, Vickers GT (1999) Modelling dominance hierarchies using multi-player game theory. Ann Hum Genet 63(4):353–354

    Google Scholar 

  7. Chesson P, Gebauer RLE, Schwinning S (2004) Resource pulses, species interactions and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253

    Google Scholar 

  8. Cressman R (2003) Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge

    MATH  Google Scholar 

  9. Cressman R, Krivan V (2019) Bimatrix games that include interaction times alter the evolutionary outcome: the Owner–Intruder game. J Theor Biol 460:262–273

    MathSciNet  MATH  Google Scholar 

  10. Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  11. Donofrio A (1997) Stability properties of pulse vaccination strategy in SEIR epidemic model. Math Comput Modelling 26:207–225

    Google Scholar 

  12. Eshel I (2005) Asymmetric population games and the legacy of Maynard Smith: from evolution to game theory and back. Theor Popul Biol 68(1):11–18

    MATH  Google Scholar 

  13. Eshel I, Akin E (1983) Coevolutionary instability of mixed Nash solutions. J Math Biol 18:123–133

    MathSciNet  MATH  Google Scholar 

  14. Eshel I, Sansone E (1995) Owner–intruder conflict, Grafen effect and self-assessment. The Bourgeois principle re-examined. J Theor Biol 177(4):341–356

    Google Scholar 

  15. Fan M, Wang K (1998) Optimal harvesting policy for single population with periodic coefficients. Math Biosci 152:165–177

    MathSciNet  MATH  Google Scholar 

  16. Grasman J, van Herwaarden OA (2001) A two-component model of hostparasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control. Math Biosci 169:207–216

    MathSciNet  MATH  Google Scholar 

  17. Guo ZG, Song LP, Sun GQ, Li C, Jin Z (2019) Pattern dynamics of an SIS epidemic model with nonlocal delay. Int J Bifurc Chaos 29:1–12

    MathSciNet  MATH  Google Scholar 

  18. Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Jin Z, Ma Z, Han (2004) The existence of periodic solutions of the n-species Lotka–Volterra competition system with impulsive. Chaos Solitons Fractals 22:181–188

    MathSciNet  MATH  Google Scholar 

  20. Korn R (1999) Some applications of impulse control in mathematical finance. Math Meth Oper Res 50:493–518

    MathSciNet  MATH  Google Scholar 

  21. Laksmikantham V, Bainov P, Simeonov S (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore

    Google Scholar 

  22. Lasalle JP (1976) Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, pp 418–420

    Google Scholar 

  23. Li L (2015) Patch invasion in a spatial epidemic model. Appl Math Comput 258:342–349

    MathSciNet  MATH  Google Scholar 

  24. Liu X (1995) Impulsive stabilization and applications to population growth models. Rocky Mt J Math 25:381–395

    MathSciNet  MATH  Google Scholar 

  25. Liu X, Chen L (2003) Complex dynamic of Holling type II Lotka–Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 6:311–320

    MathSciNet  MATH  Google Scholar 

  26. Liu B, Chen L (2004) The periodic competing Lotka–Volterra model with impulsive effect. Math Med Biol 21:129–145

    MATH  Google Scholar 

  27. Liu X, Rohlf K (1998) Impulsive control of a Lotka–Volterra system. IMA J Math Control Inf 15:269–284

    MathSciNet  MATH  Google Scholar 

  28. Liu B, Teng Z, Liu W (2007) Dynamical behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos Solitons Fractals 31:356–370

    MathSciNet  MATH  Google Scholar 

  29. Macias-Diaz JE (2019) Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion. Appl Math Modelling 2019:1–21

    Google Scholar 

  30. Marrow P, Law R, Cannings C (1992) The coevolution of predator–prey interactions: ESSs and red queen dynamics. Proc R Soc Lond B 250:133–141

    Google Scholar 

  31. Maynard Smith J (1982) Evolution and the Theory of Games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Maynard Smith J, Hofbauer J (1987) The “battle of the sexes”: a genetic model with limit cycle behavior. Theor Popul Biol 32:1–14

    MathSciNet  MATH  Google Scholar 

  33. Maynard Smith J, Parker J (1976) The logic of asymmetric contests. Anim Behav 25:1–9

    Google Scholar 

  34. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    MATH  Google Scholar 

  35. Pang G, Chen L (2014) Periodic solution of the impulsive state feedback control. Nonlinear Dyn 78:743–753

    MathSciNet  MATH  Google Scholar 

  36. Pei Y, Chen L, Zhang Q, Li C (2005) Extinction and permanence of one-prey multi-predators of Holling type II functions response system with impulsive biological control. J Theo Biol 235:495–503

    MathSciNet  Google Scholar 

  37. Roberts MG, Kao RR (1998) The dynamics of an infectious disease in a population with birth pulses. Math Biosci 149:23–36

    MATH  Google Scholar 

  38. Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6:208–249

    Google Scholar 

  39. Schaaf R (1985) A class of Hamiltonian systems with increasing periods. J für die rein angew Math 363:96–109

    MathSciNet  MATH  Google Scholar 

  40. Schuster P, Sigmund K (1981) Coyness, philandering and stable strategies. Anim Behav 29:186–192

    Google Scholar 

  41. Selten R (1980) A note on evolutionarily stable strategies in asymmetric conflicts. J Theor Biol 84:93–101

    MathSciNet  Google Scholar 

  42. Shin N, Kwag T, Park S, Kim YH (2017) Effects of operational decisions on the diffusion of epidemic disease: a system dynamics modeling of the MERS–CoV outbreak in South Korea. J Theor Biol 421:39–50

    Google Scholar 

  43. Shulgi B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60:1–26

    Google Scholar 

  44. Song X, Xiang Z (2006) The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. J Theor Biol 242:683–698

    MathSciNet  Google Scholar 

  45. Sun G, Bai Z, Zhang Z, Jin Z (2013) Positive periodic solutions of an epidemic model with seasonality. Sci World J 2013:1–10

    Google Scholar 

  46. Sun M, Liu Y, Liu S, Hu Z, Chen L (2016) A novel method for analyzing the stability of periodic solution of impulsive state feedback model. Appl Math Comput 273:425–434

    MathSciNet  MATH  Google Scholar 

  47. Sun GQ, Jin Z, Wang Y, Jusup Marko (2016) Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys Life Rev 19:1–36

    Google Scholar 

  48. Tang S, Cheke RA (2005) State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J Math Biol 50:257–292

    MathSciNet  MATH  Google Scholar 

  49. Tang S, Chen L (2002) Density-dependent birth rate, birth pulses and their population dynamic consequences. J Math Biol 44:185–199

    MathSciNet  MATH  Google Scholar 

  50. Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game dynamics. J Theor Biol 40:145–156

    MathSciNet  MATH  Google Scholar 

  51. Wang W, Wang L, Li Z (2007) The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy. Chaos Solitons Fractals 32:1772–1785

    MathSciNet  MATH  Google Scholar 

  52. Wang SC, Zhang BY, Li ZQ, Cressman R, Tao Y (2008) Evolutionary game dynamics with impulsive effects. J Theor Biol 254:384–389

    MathSciNet  MATH  Google Scholar 

  53. Wang L, Chen L, Juan JN (2010) The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal Real World Appl 11:1374–1386

    MathSciNet  MATH  Google Scholar 

  54. Wei C, Chen L (2014) Homoclinic bifurcation of prey–predator model with impulsive state feedback control. Appl Math Comput 237:282–292

    MathSciNet  MATH  Google Scholar 

  55. Xiao Y, Cheng D, Qin H (2006) Optimal impulsive control in periodic ecosystem. Syst Control Lett 55:558–565

    MathSciNet  MATH  Google Scholar 

  56. Zhang Y, Chen L (2012) The periodic Volterra model with mutual interference and impulsive effect. Int J Biomath 05:1–15

    MathSciNet  MATH  Google Scholar 

  57. Zhang Y, Xiu Z, Chen L (2005) Dynamical complexity of a two-prey one-predator system with impulsive effect. Chaos Solitons Fractals 26:131–139

    MATH  Google Scholar 

  58. Zhang BY, Cressman R, Tao Y (2010) Cooperation and stability through periodic impulses. PloS ONE 5(3):e9882

    Google Scholar 

  59. Zhao M, Wang Y, Chen L (2012) Dynamic analysis of a predator–prey(pest) model with disease in prey and involving an impulsive control strategy. J Appl Math 2012:1–18

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Josef Hofbauer for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grants 71771026 and 71922004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Note A1. Population Dynamics with Periodic Impulses

To derive the time evolution of population sizes with periodic impulses, we assume that all A-individuals have the same density-dependent background fitness \(W_A(n)\), where n is the size of population A, and all B-individuals have the same background fitness \(W_B(m)\), where m is the size of population B [18, 31]. Specifically, we consider \(W_A(n)=R_A(1-\frac{n}{K_A})\) and \(W_B(m)=R_B(1-\frac{m}{K_B})\), i.e., the background fitness has the form of logistic growth [18]. Let \(n_1\) and \(n_2\) be the numbers of \(A_1\) and \(A_2\) individuals in population A, respectively, and \(m_1\) and \(m_2\) be the numbers of \(B_1\) and \(B_2\) individuals in population B, respectively. Then the time evolution of \(n_1, n_2, m_1, m_2\) with periodic impulses can be written as

$$\begin{aligned} \begin{aligned}&\frac{\hbox {d}n_1}{\hbox {d}t}=n_1\left( a_{11}\frac{m_1}{m}+a_{12}\frac{m_2}{m}+R_A\left( 1-\frac{n}{K_A}\right) \right) , \quad \text {for } t\ne {k\tau },\\&\frac{\hbox {d}n_2}{\hbox {d}t}=n_2\left( a_{21}\frac{m_1}{m}+a_{22}\frac{m_2}{m}+R_A\left( 1-\frac{n}{K_A}\right) \right) , \quad \text {for } t\ne {k\tau },\\&\frac{\hbox {d}m_1}{\hbox {d}t}=m_1\left( b_{11}\frac{n_1}{n}+b_{21}\frac{n_2}{n}+R_B\left( 1-\frac{m}{K_B}\right) \right) , \quad \text {for } t\ne {k\tau },\\&\frac{\hbox {d}m_2}{\hbox {d}t}=m_2\left( b_{12}\frac{n_1}{n}+b_{22}\frac{n_2}{n}+R_B\left( 1-\frac{m}{K_B}\right) \right) , \quad \text {for } t\ne {k\tau },\\&\Delta n_1=-\gamma _1 n_1, \quad \text {for } t={k\tau },\\&\Delta n_2=-\gamma _2 n_2, \quad \text {for } t={k\tau },\\&\Delta m_1=-\psi _1 m_1, \quad \text {for } t={k\tau },\\&\Delta m_2=-\psi _1 m_2, \quad \text {for } t={k\tau }. \end{aligned} \end{aligned}$$
(22)

We note that the frequency dynamics Eq. (3) is well defined only for \(m>0\) and \(n>0\). Thus, it is essential to provide sufficient conditions that \(m=0\) or \(n=0\) are unstable under Eq. (22). For \(n \rightarrow 0\), the change of \(n_i\) in an impulsive interval can be approximated as \(\frac{\hbox {d}n_i}{n_i}=(a_{i1}\frac{m_1}{m}+a_{i2}\frac{m_2}{m}+R_A)\hbox {d}t\) with integral

$$\begin{aligned} \ln \frac{n_i(\tau )}{n_i(0)}=\int _{0}^{\tau }(a_{i1}\frac{m_1}{m}+a_{i2}\frac{m_2}{m}+R_A)\hbox {d}t \ge \tau (\check{a_i}+R_A), \end{aligned}$$
(23)

where \(\check{a_i}=\min \{a_{i1},a_{i2}\}\). The boundary \(n=0\) is unstable if \(n_1(\tau )+n_2(\tau )-n_1(0)-n_2(0)>\gamma _1 n_1(\tau )+\gamma _2 n_2(\tau )\), i.e., the increase in the population size in an impulsive interval is greater than the decrease at the moment of jump [2]. This inequality holds for \(\gamma _i<1-\exp (-\tau (\check{a_i}+R_A))\) with \(i=1,2\). Similarly, the boundary \(m=0\) is unstable if \(\psi _j<1-\exp (-\tau (\check{b_j}+R_B))\) with \(j=1,2\), where \(\check{b_j}=\min \{b_{1j},b_{2j}\}\).

Lemma A1

Let us denote the cyclic orbit of Eq. (2) that passes \((p^*, q^*)\) by \(H(p, q)=M^*\), and denote the period of this orbit by \(T(p^*, q^*)\). (1) \(T(p^*, q^*)\) takes its minimum \(T_{min}=2\pi \sqrt{-\frac{(a_1+a_2)(b_1+b_2)}{a_1a_2b_1b_2}}\) when \((p^*, q^*)=(p_0, q_0)\). (2) Furthermore, for \(q^*=q_0\) and \(p^*>p_0\), T is monotonically increasing in \(p^*\) and \(\lim \limits _{p^* \rightarrow 1}T(p^*, q^*)=\infty \).

Proof

Part (b) of Lemma 1 is directly from [39] Theorem 1 and example 2. Thus, \(T(p^*, q^*)\) takes its minimum when \((p^*, q^*)=(p_0, q_0)\). We next calculate \(T(p^*, q^*)\) at this equilibrium.

When the dynamical system Eq. (2) is near the interior equilibrium, it could be approximated as

$$\begin{aligned} \begin{aligned} \frac{\hbox {d}p}{\hbox {d}t}=a(q_0-q),\\ \frac{\hbox {d}q}{\hbox {d}t}=b(p_0-p), \end{aligned} \end{aligned}$$
(24)

where \(a=p_o(1-p_0)(a_1+a_2)\) and \(b=q_o(1-q_0)(b_1+b_2)\). By setting \(y=q_0-q\) and \(x=p_0-p\), we obtain

$$\begin{aligned} \left( \begin{array}{c}\frac{\hbox {d}x}{\hbox {d}t}\\ \frac{\hbox {d}y}{\hbox {d}t}\end{array}\right) =\left( \begin{array}{cc}0 &{} -a \\ -b &{} 0\end{array}\right) \left( \begin{array}{c}x\\ y\end{array}\right) , \end{aligned}$$
(25)

where the eigenvalues of the matrix \(\left( \begin{array}{cc}0 &{} -a \\ -b &{} 0\end{array}\right) \) are \(\lambda _1,\lambda _2=\pm {i\sqrt{-ab}}\). Clearly, the solution of Eq. (25) can be written as

$$\begin{aligned} \left( \begin{array}{c}x(t) \\ y(t)\end{array}\right) =x_1\exp (i\sqrt{-ab}t)+x_2\exp (-i\sqrt{-ab}t), \end{aligned}$$
(26)

where \(x_1\) and \(x_2\) are eigenvectors corresponding to eigenvalues \(\lambda _1\) and \(\lambda _2\), and the period of this solution is \(2\pi /\sqrt{-ab}\). Thus, the period of cyclic orbits near the interior equilibrium \((p_0,q_0)\) is

$$\begin{aligned} T_{\hbox {min}}=2\pi \sqrt{-\frac{(a_1+a_2)(b_1+b_2)}{a_1a_2b_1b_2}}. \end{aligned}$$
(27)

\(\square \)

Lemma A2

Define \({{\widetilde{H}}}(p,q)=H(p+\Delta p,q+\Delta q)\). \({{\widetilde{H}}}(p,q)=M\) (with \(M<0\)) is a closed curve. Furthermore, there exists a unique \(M_0\) such that \(H(p,q)=M\) and \({{\widetilde{H}}}(p,q)=M\) have at least two intersection points for \(M<M_0\).

Proof

For convenience, we denote \(p+\Delta p\) and \(q+\Delta q\) by \(p^+\) and \(q^+\), respectively. For the relationship between pq and \(p^+, q^+\),

$$\begin{aligned} \begin{aligned} p^+=\frac{(1-\gamma _1)p}{1-\gamma _1p-\gamma _2(1-p)},\quad q^+=\frac{(1-\psi _1)q}{1-\psi _1q-\psi _2(1-q)}, \end{aligned} \end{aligned}$$
(28)

and

$$\begin{aligned} \begin{aligned} p=\frac{(1-\gamma _2)p^+}{1-\gamma _1+(\gamma _1-\gamma _2)p^+},\quad q=\frac{(1-\psi _2)q^+}{1-\psi _1+(\psi _1-\psi _2)q^+}. \end{aligned} \end{aligned}$$
(29)

Then, we have

$$\begin{aligned} \frac{\hbox {d}p^+}{\hbox {d}t}= & {} \frac{\hbox {d}p^+}{\hbox {d}p}\frac{\hbox {d}p}{\hbox {d}t} =\frac{(1-\gamma _2)(1-\gamma _1)p^+(1-p^+)}{1-\gamma _1+(\gamma _1-\gamma _2)p^+}\bigg [a_2-\frac{(1-\psi _2)q^+(a_1+a_2)}{1-\psi _1+(\psi _1-\psi _2)q^+}\bigg ],\nonumber \\ \frac{\hbox {d}q^{+}}{\hbox {d}t}= & {} \frac{\hbox {d}q^{+}}{\hbox {d}q}\frac{\hbox {d}q}{\hbox {d}t} =\frac{(1-\psi _2)(1-\psi _1)q^+(1-q^+)}{1-\psi _1+(\psi _1-\psi _2)q^+}\bigg [b_2-\frac{(1-\gamma _2)p^+(b_1+b_2)}{1-\gamma _1+(\gamma _1-\gamma _2)p^+}\bigg ].\nonumber \\ \end{aligned}$$
(30)

Specifically, Eq. (30) is equivalent to a Hamilton system

$$\begin{aligned} \begin{aligned}&\frac{\hbox {d}p^+}{\hbox {d}t}=\frac{a_2-\frac{q^+(1-\psi _2)(a_1+a_2)}{1-\psi _1+(\psi _1-\psi _2)q^+}}{(1-\psi _2)(1-\psi _1)\frac{q^+(1-q^+)}{1-\psi _1+(\psi _1-\psi _2)q^+}},\\&\frac{\hbox {d}q^+}{\hbox {d}t}=\frac{b_2-\frac{p^+(1-\gamma _2)(b_1+b_2)}{1-\gamma _1+(\gamma _1-\gamma _2)p^+}}{(1-\gamma _2)(1-\gamma _1)\frac{p^+(1-p^+)}{1-\gamma _1+(\gamma _1-\gamma _2)p^+}}. \end{aligned} \end{aligned}$$
(31)

where this system has an unique interior equilibrium \((p_0^+, q_0^+)=((\frac{b_{2}}{b_{1}+b_{2}})^+,(\frac{a_{2}}{a_{1}+a_{2}})^+)\) and a constant of motion \(H(p^+,q^+)={{\widetilde{H}}}(p,q)\). Thus, \({{\widetilde{H}}}(p,q)=M\) (with \(M<0\)) is a closed curve that surrounds \((p_0^+, q_0^+)\).

We note that both \(H(p,q)=M\) and \({{\widetilde{H}}}(p,q)=M\) are closed curves. Furthermore, they have no intersection point for \(M_{\max }=H(p_0,q_0)\) because in this case \(H(p,q)=M\) is close to \((p_0,q_0)\) and \({{\widetilde{H}}}(p,q)=M\) is close to \((p_0^+,q_0^+)\). Thus, there exists \(M_0<M_{\max }\) such that \(H(p,q)=M_0\) and \({{\widetilde{H}}}(p,q)=M_0\) are tangent. In addition, \({{\widetilde{H}}}(p,q)=M\) is never included in \({{\widetilde{H}}}(p,q)=M\) (and vice versa) since \(p^+<p^-\) and \(q^+<q^-\). Therefore, for \(M<M_0\), \(H(p,q)=M\) and \({{\widetilde{H}}}(p,q)=M\) have at least two intersection points. \(\square \)

Lemma A3

\(\tau _{10}\) and \(\tau _{20}\) can be seen as functions of T, and they change continuously in T.

Proof

Lemma A2 shows that \(H(p,q)=M\) and \({{\widetilde{H}}}(p,q)=M\) have (at least) two intersection points for \(M<M_0\). We denote the two intersection points by \((p_1^-, q_1^-)\) and \((p_2^-, q_2^-)\), and denote their integral times by \(\tau _{10}\) and \(\tau _{20}\) (with \(0<\tau _{10}<\tau _{20}<T\)), respectively.

Without loss of generality, we focus on the properties of \(\tau _{10}\), and the properties of \(\tau _{20}\) can be analyzed analogously. Since T is a continuously decreasing functions of M [39], we only need to prove that \(\tau _{10}\) is a continuous function of M.

From the expressions of \(H(p,q)=M\) and \({{\widetilde{H}}}(p,q)=M\), both of them are continuous functions of p and q. Specifically, \(\frac{\partial H(p,q)}{\partial p}\), \(\frac{\partial H(p,q)}{\partial q}\), \(\frac{\partial {{\widetilde{H}}}(p,q)}{\partial p}\), and \(\frac{\partial {{\widetilde{H}}}(p,q)}{\partial q}\) do not equal to 0 almost always. Thus, their intersection point \((p_1^-, q_1^-)\) must change continuously on M. Otherwise, a sudden change on \((p_1^-, q_1^-)\) will cause a jump on M. Besides, from Eq. (28), \((p_1^+, q_1^+)\) also changes continuously on M.

We note that \(\tau _{10}\) can be expressed as the following integral on curve \(H(p,q)=M\)

$$\begin{aligned} \tau _{10}=\int _{(p_1^+, q_1^+)}^{((p_1^-, q_1^-)}\frac{\hbox {d}s}{\sqrt{P^2(p,q)+Q^2(p,q)}}, \end{aligned}$$
(32)

where s is the element of arc. Since both \((p_1^-, q_1^-)\) and \((p_1^+, q_1^+)\) change continuously on M, \(\tau _{10}\) is a continuous function of M. This completes the proof. \(\square \)

Lemma A4

Equation (17) has no periodic solutions in region \((0,1)\times (0,1)\) for arbitrary values of \(a_1, a_2, b_1, b_2\).

Proof

Let us define Dulac function \(B=\frac{1}{p(1-p)q(1-q)}\). From the Bendixson–Dulac theorem, no periodic solutions can exist in region \((0,1)\times (0,1)\) since

$$\begin{aligned} \frac{\partial (BP)}{\partial p}+\frac{\partial (BQ)}{\partial q}=-\frac{U(p)^2}{q(1-q)\tau }-\frac{V(q)^2}{p(1-p)\tau }<0 \end{aligned}$$
(33)

for all possible \(0<p<1\),\(0<q<1\). \(\square \)

Lemma A5

For BS game with \(a_2-\frac{\gamma _1-\gamma _2}{\tau (1-\gamma _1)}>0\) and \(b_1+\frac{\psi _1-\psi _2}{\tau (1-\psi _1)}<0\), all trajectories for Eq. (17) with initial values in \((0,1)\times (0,1)\) will converge to \(({\widetilde{p}},{\widetilde{q}})\).

Proof

For any initial value \((p^*, q^*) \in (0,1)\times (0,1)\), there exists \(\varepsilon >0\) such that \((p^*, q^*)\) and \(({\widetilde{p}},{\widetilde{q}})\) are in \(D=[\varepsilon ,1-\varepsilon ] \times [\varepsilon ,1-\varepsilon ]\). Define

$$\begin{aligned} \begin{aligned} V(p, q)&=(b_1+b_2)\int \frac{{\widetilde{p}}-p}{p(1-p)}\hbox {d}p+(a_1+a_2) \int \frac{{\widetilde{q}}-q}{q(1-q)}\hbox {d}q \\&=(b_1+b_2)[{\widetilde{p}}\ln \frac{p}{1-p}+\ln (p-1)]-(a_1+a_2) [{\widetilde{q}}\ln \frac{q}{1-q}+\ln (q-1)]. \end{aligned} \end{aligned}$$
(34)

Clearly, V(pq) is a continuous and bounded function in D. We next show that V(pq) is a Lyapunov function for Eq. (17).

$$\begin{aligned} \frac{\hbox {d}V(p, q)}{\hbox {d}t}= & {} (b_1+b_2)\frac{{\widetilde{p}}-p}{p(1-p)}\frac{\hbox {d}p}{\hbox {d}t}-(a_1+a_2) \frac{{\widetilde{q}}-q}{q(1-q)}\frac{\hbox {d}q}{\hbox {d}t} \nonumber \\= & {} (b_1+b_2)({\widetilde{p}}-p)[a_2-q(a_1+a_2)+\frac{U(p)}{\tau }]\nonumber \\&-(a_1+a_2) ({\widetilde{q}}-q)[b_2-p(b_1+b_2)+\frac{V(q)}{\tau }]. \end{aligned}$$
(35)

Notice that \({\widetilde{p}}\) and \({\widetilde{q}}\) satisfy

$$\begin{aligned} a_2-{\widetilde{q}}(a_1+a_2)+\frac{U({\widetilde{p}})}{\tau }=b_2-{\widetilde{p}} (b_1+b_2)+\frac{V({\widetilde{q}})}{\tau }=0, \end{aligned}$$
(36)

Equation (35) can be rewritten as

$$\begin{aligned} \frac{\hbox {d}V(p, q)}{\hbox {d}t}=(b_1+b_2)({\widetilde{p}}-p)\frac{U(p)-U({\widetilde{p}})}{\tau }-(a_1+a_2)({\widetilde{q}}-q)\frac{V(q)-V({\widetilde{q}})}{\tau }.\nonumber \\ \end{aligned}$$
(37)

Since \(\frac{\hbox {d}U(p)}{\hbox {d}p}=-(U(p))^2<0\) and \(\frac{\hbox {d}V(q)}{\hbox {d}q}=-(V(q))^2<0\), we must have \(({\widetilde{p}}-p)(U(p)-U({\widetilde{p}}))\ge 0\) and \(({\widetilde{q}}-q)(V(q)-V({\widetilde{q}}))\ge 0\), where the equalities hold only for \((p,q)=({\widetilde{p}},{\widetilde{q}})\). This implies \(\frac{\hbox {d}V(p, q)}{\hbox {d}t}\le 0\) in D, where the equality holds only for \((p,q)=({\widetilde{p}},{\widetilde{q}})\). Applying the Lasalle’s invariance principle [22], V(pq) is a Lyapunov function for Eq. (17) and the trajectory with initial value \((p^*, q^*) \in D\) will converge to \(({\widetilde{p}},{\widetilde{q}})\) as \(t\rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Wang, X. & Zhang, B. Bimatrix Replicator Dynamics with Periodic Impulses. Dyn Games Appl 10, 676–694 (2020). https://doi.org/10.1007/s13235-019-00344-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-019-00344-w

Navigation