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Abstract
This review presents and reviews various solved and open problems in developing, analyzing,
and mitigating epidemic spreading processes under human decision-making. We provide a
review of a range of epidemic models and explain the pros and cons of different epidemic
models. We exhibit the art of coupling between epidemic models and decision models in the
existing literature. More specifically, we provide answers to fundamental questions in human
decision-making amid epidemics, including what interventions to take to combat the disease,
who are decision-makers, and when and how to take interventions, and how to make inter-
ventions. Among many decision models, game-theoretic models have become increasingly
crucial in modeling human responses or behavior amid epidemics in the last decade. In this
review, wemotivate the game-theoretic approach to human decision-making amid epidemics.
This review provides an overview of the existing literature by developing amulti-dimensional
taxonomy, which categorizes existing literature based on multiple dimensions, including (1)
types of games, such as differential games, stochastic games, evolutionary games, and static
games; (2) types of interventions, such as social distancing, vaccination, quarantine, and
taking antidotes; (3) the types of decision-makers, such as individuals, adversaries, and cen-
tral authorities at different hierarchical levels. A fine-grained dynamic game framework is
proposed to capture the essence of game-theoretic decision-making amid epidemics. We
showcase three representative frameworks with unique ways of integrating game-theoretic
decision-making into the epidemic models from a vast body of literature. Each of the three
frameworks has their unique way of modeling and analyzing and develops results from dif-
ferent angles. In the end, we identify several main open problems and research gaps left to
be addressed and filled.
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1 Introduction

The advancement of Information and Communication Technologies (ICTs) and transporta-
tion technologies has been connecting entities, including people and devices, in various ways
and improving the quality of lives globally. While benefiting from increasing connectivity,
we have also experienced several toxic “side effects” that are bought by hidden spreading
processes over the underlying networks. Such processes include the spread of contagious
diseases over human contact networks and animal populations, the diffusion of viruses or
worms over communication and computer networks, and the propagation of rumors and fake
news over social media. The recent COVID-19 pandemic, which has been taking a devastat-
ing toll on the physical and economic well-being of people across the world, emphasizes the
importance of understanding these processes. Certainly, a fundamental understanding of the
evolution and control of these processes will contribute to alleviating the threats to the safety,
well-being, and security of people and other interconnected systems around the world.

The underlying networks on which these processes spread are usually large-scale complex
networks composed of intelligent and strategic individuals with different beliefs, perceptions,
and objectives. The scale and complexity of the underlying networks, the unpredictability of
individuals’ behavior, and the unavailability of accurate and timely data blur our understand-
ing of the evolution and control of these processes.

The inclusion of human decision-makers in the epidemic spreading process creates chal-
lenges. It becomes a significant hurdle for researchers to understand spreading processes
with human in the loop. The key to clear this hurdle is to integrate decision models into epi-
demic models. Mathematical models of epidemic spreading started 200 years ago by Daniel
Bernoulli [17], at the dawn of the industrial revolution. Many papers have been dedicated to
the modeling of epidemic spreading over the last 200 years. But not until very recent years
has there been studies investigating human decision-making amid epidemics and the effect
of human responses on the spreading processes. In this review, we review and present various
solved and open problems in developing, analyzing, and mitigating the epidemic spreading
process with human decision-making. We provide a tutorial on epidemic models and the
pros and cons of different epidemic models. We explain in detail how decision models are
integrated into epidemic models in the existing literature. For example, we provide concrete
examples regarding what interventions can be taken by individuals and the central author-
ity to fight against the epidemic, when interventions are taken, and how interventions are
modeled.

Among various decision models, game-theoretic models have become prominent in mod-
eling human responses/behavior amid epidemics in the last decade. The popularity of
game-theoretic models for human-in-the-loop epidemics is primarily due to the follow-
ing reasons. One rationale is the large-scale nature of the human population. Centralized
decision-making becomes intractable in a large-scale network. Game-theoretic models pro-
vide a bottom-up decentralized modeling framework that naturally makes the computation
and design scalable. The second one is that individuals living amid an epidemic may not be
willing to complywith the suggested protocols, and individuals aremostly self-interested. The
third one is that game theory as a mature and extensive field offers a set of relevant concepts
and analytical techniques that can be leveraged to study human behavior amid epidemics.
In this review, we demonstrate that game-theoretic frameworks are powerful in modeling
the spreading processes of human-in-the-loop epidemics. We provide a multi-dimensional
taxonomy of the existing literature that has proposed, studied, and analyzed game-theoretic
models for human-in-the-loop epidemics. Among existing literature, we showcase three rep-
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resentative frameworks with unique ways of integrating game-theoretic decision-making into
the epidemic models. The uniqueness of each of these three frameworks distinguishes them
from each other by means of their models, analytical methods, and results.

Despite a recent surge in the literature about game-theoretic models for studying the
human-in-the-loop epidemic spreading, a number of open problems and research gaps are
left to be addressed and filled. Hence, we use one section to discuss emerging topics. As we
continue to witness the devastating toll of the pandemic on human society, this review aims
to introduce to more researchers, especially game and dynamic game theorists the subject of
game-theoretic modeling of human-in-the-loop epidemic spreading processes. Their contri-
butions to understanding and mitigating the human-in-the-loop epidemic spreading would
make a significant societal impact.

1.1 Mathematical Preliminaries

Graph Theory A directed graph (network) is a pair G = (N , E), whereN is the set of nodes
representing individuals involved and E ⊂ N×N is the set of edges representing connections
between two individuals. The size of the network is N = |N |. Given G, an edge from node
i ∈ N to node j ∈ N is denoted by (i, j). When (i, j) ∈ E implies ( j, i) ∈ E and vice
versa, the graph G is undirected. For an undirected network, we denote Ni = { j |(i, j) ∈ E}
the set of neighbors of node i . For a directed network, we denote Nout

i the out-neighbor set
of individual i , which is defined as Ni = { j |( j, i) ∈ E}. Let A ∈ R

N×N be the adjacency
matrix for an unweighted graph G with elements ai j = 1 if and only if (i, j) ∈ E . Otherwise,
ai j = 0. For an unweighted network, we use W as the adjacency matrix with elements
wi j ∈ R+ denoting the weight of link (i, j).

The number of neighbors a node has is called the degree of a node. Given a graph G,
P(k) is the proportion of nodes who have degree k. The average degree of a graph is denoted
by 〈k〉:=∑

k kP(k). We define 〈k2〉:=∑
k k

2P(k). If G is a scale-free graph, its degree
distribution follows P(k) ∼ k−γ with γ ranges from 2 to 3. If G is a regular graph, then each
node in G has the same degree.

Notation For a square matrix M , λmax (M) is the spectral radius of matrix M . Given a
vector (x1, x2, . . . , xN ), diag(x1, x2, . . . , xN ) is an N ×N matrix whose elements on the i-th
row and the i-th column is xi . The identity matrix is denoted by Id . We use E[·] and P(·) to
denote the expected value and the probability of the argument. Given x = (x1, x2, . . . , xN ),
x−i denotes the vector x with element xi removed. Given a graph G and a vector associated
with its nodes x = (x1, x2, . . . , xN ), xNi denotes the vector that includes all the elements
associated with node i and its neighbors. Let �n be the probability simplex of dimension
n − 1, i.e., �n = {x ∈ R

n |x1 + x2 + · · · + xn = 1, xi ≥ 0,∀i = 1, 2, . . . , n}.

2 Epidemic Models and DecisionModels

To understand the evolution and control of epidemic spreading at a fundamental level, we
need to understand both the epidemic model and the decision model, and the art of coupling
these two models.
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2.1 Epidemic Models

The spreading of infectious diseases has affected human civilization since the age of nomadic
hunter-gatherers. Mathematical models of epidemic spreading started to be proposed and
studied since the beginning of the industrial revolution, with one of the earliest attempts to
model infectious disease transmission mathematically by Daniel Bernoulli [17]. Over the
last 200 years, many mathematical models of epidemics have been proposed and analyzed
[11,29,101,105,134].
Compartment Models The basic models of many mathematical modeling of epidemics
are the well-known compartment models [71]. In compartment models, every subject,
based on the status, belongs to some compartment of the population at any given time.
Common compartments include the susceptible (S), the exposed (E), the infected (I), the
asymptomatic (A), and the recovered who are immune to the disease (R). Depending
on the mechanisms of infectious diseases, different compartment epidemic models such
as SIS (susceptible–infected–recovered), SIR (susceptible–infected–recovered), and SEIR
(susceptible–exposed–infected–recovered) are studied and analyzed. Some infections, such
as the common cold and influenza, do not confer any long-lasting immunity. Such infections
can be modeled by the SIS model since individuals can become susceptible again after their
recovery. If individuals recoverwith permanent immunity, themodel is anSIRmodel. TheSIR
model has been used to study infectious diseases such asmeasles, mumps, and smallpox [71].
Many variants of compartment models have been proposed and studied in the past decades.
For example, Rothe et al. [118] have looked into an SAIRS (susceptible–asymptomatic–
infected–recovered–susceptible) to model the COVID-19 pandemic; Erdem et al. [32] have
investigated an SIQR (susceptible–asymptomatic–infected–quarantine–recovered) to study
the effect of imperfect quarantine on the spreading of an influenza epidemic; Huang et al. [62]
have proposed a model that connects the SIS and the SIR models, in which once recovered
from an infection, individuals become less susceptible to the disease.

2.1.1 Stochastic Versus Deterministic Models

To capture the dynamics of the epidemic-spreading process, we need a dynamic model to
describe the evolution of the population in each compartment. In general, epidemic mod-
els are categorized into two groups: deterministic epidemic models and stochastic epidemic
models, depending on the mathematical formulation. Deterministic models, oftentimes rep-
resented by a collection of ordinary differential equations (ODEs), have perhaps received
more attention in the literature [71,101,105,134]. Their popularity is because deterministic
models can becomemore complex yet still feasible to analyze, at least when numerical results
are sufficient. In contrast, stochastic models, usually represented by Markov processes, need
to be fairly simple to be mathematically manageable[11,29].

There are, however, several advantages of stochastic epidemic models over deterministic
epidemic models when the analysis is tractable. First, the epidemic spreading processes are
stochastic by nature. For example, the disease transmission between individuals ismore spon-
taneously described by probabilities than deterministic rules that govern the transmission.
Second, stochastic modeling has its deterministic counterpart through mean-field analysis.
The stochastic modeling provides a microscopic description of the epidemic process, while
the deterministic counterpart is useful to describe the spreading of epidemics at a macro-
scopic level, e.g., the fraction of the infected population at a given time. When the number of
individual N is small, or the size of the infection is small in a large community, the mean-field
approximation will experience a considerable approximation error, and hence deterministic
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models may fail to accurately describe the spreading process [134]. Third, deterministic
models are incapable of capturing higher-order characteristics of the spreading process, such
as variances, which are useful for the understanding of the uncertainties in the estimates.

Overall, deterministic models and stochastic ones are complementary to each other.
Deterministic models describe the spreading process at a macroscopic level and are more
manageable mathematically, yet subject to assumptions on the spreading processes. Stochas-
tic models approach the spreading processes from a microscopic point of view and offer a
detailed description of the spreading process. In the following subsections, we introduce both
deterministic and stochastic models using the SIS epidemic models as examples.

2.1.2 Deterministic Models

Over the last century, increasingly sophisticated deterministic epidemic models have been
proposed to capture the spreading processes on growingly complex and realistic networks.

In an SISmodel, each individual in the system is either infected or susceptible. An infected
node can infect its susceptible neighbors with an infection rate β. An infected individual
recovers at recovery rate δ. Once recovered, the individual is again prone to the disease. The
simplest deterministic SIS model is introduced by Kermack and McKendrick [71]:

Ṡ = −βS(t)I (t) + δ I (t),

İ = βS(t)I (t) − δ I (t),
(1)

where S(t) is the fraction of the population who are susceptible, I (t) is the fraction of the
infected. In (1), the rate at which the fraction of infected individuals evolve is determined by
the rate at which the infected population is recovered, i.e., δ I (t) and the rate at which the
fraction of infected population grows, i.e., βS(t)I (t). The latter rate captures the encounter
between the fraction of susceptible individuals and the fraction of infected individuals. Simple
deterministicmodels like (1) assume that the individuals in the population are homogeneously
mixed; i.e., each individual is equally likely to encounter every other node. Such models have
ignored the structure of the underlying network.

Starting from the 90s, new deterministicmodels have been proposed and studied to accom-
modate epidemic processes overmore complex and realistic network structures. Kerphart and
White [70] investigated a regular graph with N individuals where each individual has degree
k. The Kerphart and White model is described by the ODE:

İ = βk I (t)[1 − I (t)] − δ I (t), (2)

where the rate of infection is βk I (t)(1 − I (t)) which is proportional to the fraction of sus-
ceptible individuals, i.e., 1− I (t). For each susceptible individual, the rate of infection is the
product of the infection rate β and the number of infected neighbors k I (t). The Kermack
and McKendrick model (1) and the Kerphart and White model (2) are referred to as “homo-
geneous” models since they assume that the underlying network has homogeneous degree
distributions, i.e., each node in the network has the same degree.

With the emerging occurrence of complex networks in many social, biological, and com-
munication systems, it is of great interest to investigate the effect of their features on epidemic
and disease spreading. Pastor-Satorras et al. [104,105] studied the spreading of epidemics
on scale-free (SF) networks. In SF networks, the probability that an individual has degree k
follows a scale-free distribution P(k) ∼ k−γ , with γ ranges from 2 to 3. It has been shown
that many social networks such as collaboration networks, and computer networks such as
the Internet and the World Wide Web exhibit such structure properties. The Pastor-Satorras
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model further divides individuals into sub-compartments based on their degrees, with Ik(t)
representing the proportion of infected individuals with a given degree k:

İk = βk[1 − Ik(t)]�(t) − δ Ik(t), (3)

where

�(t) =
∑

k

kP(k)Ik(t)
∑

k′ k′P(k′)

represents the probability that any given link points to an infected individual. The rate at
which the infected population grows is proportional to the infection rate β, the number of
connections k, and the probability �(t) of linking to an infected individual. The model of
Pastor-Satorras et al. incorporates the degree distribution of the underlying network and
approximates the spreading processes on more complex and realistic networks.

To incorporate an arbitrary network characterized by the adjacency matrix A, Wang et al.
[137] have proposed a discrete-timemodel that generalizes the Kerphart andWhite model (2)
and the model of Pastor-Satorras et al. (3). Mieghem et al. [134] have studied a continuous-
time SIS model, called the N -intertwined deterministic model that generalizes the results in
[137]. The N -intertwined deterministic model describes the spreading processes by

ṗi = [1 − pi (t)]β
N∑

j=1

ai j p j (t) − δ pi (t), i = 1, 2, . . . , N . (4)

where pi denotes the probability of individual i being infected [134] or the proportion
of infected individuals in the sub-population i [33]. The element ai j in the adjacency
matrix represents the connectivity between individual i and individual j . The N -intertwined
deterministic model provides a microscopic description of the spreading processes by incor-
porating the adjacency matrix that fully characterizes the underlying network. Other variants
of the N -intertwined deterministic model (4) have been recently studied in [72,102]. To
capture the heterogeneity of individuals’ demographic or health situation, people consider a
N -intertwined model with heterogeneous parameters:

ṗi = [1 − pi (t)]βi
N∑

j=1

ai j p j (t) − δi pi (t), i = 1, 2, . . . , N , (5)

where βi describes the infection rate of individual i and δi represents the recovery rate of
individual i . Khanafer et al. have considered an N -intertwined mode in a directed network
[72]. Paré et al. have extended the N -intertwined deterministic model to accommodate time-
varying networks [102].

Most studies of deterministic epidemicmodels are interested in analyzing the system equi-
libria (the limit behavior of the spreading process as time reaches infinity), characterizing the
threshold that determines which equilibrium the system converges to, and evaluating stability
properties of different equilibria [70,101,104,134,137]. Define the effective spreading rate
τ :=β/δ. One of the primary goals inmost studies of deterministic epidemicmodels is to char-
acterize the threshold τc. If τ > τc, the epidemic persists and at least a nonzero proportion of
the individuals are infected. If τ ≤ τc, the epidemic dies out. The Kerphart and White model
(2) gives a “steady-state” epidemic threshold τc,KW = 1/k, which is inversely proportional to
the individuals’ degree in a regular graph [70]. Themodel of Pastor-Satorras et al. (3) provides
a threshold τc,PS = 〈k〉/〈k2〉, with 〈k〉 = ∑

k′ k′P(k′) and 〈k2〉 = ∑
k′ k′2P(k′). Hence, in

SF networks, there will be an absence of threshold if 〈k2〉 → ∞, meaning even a disease with
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a low infection rate can cause an outbreak in such a network. The epidemic threshold for the
N -intertwined deterministic model (4) is specified by τc,VPM = 1/λmax(A), where λmax(A)

the special radius of the adjacency matrix A [134]. For the heterogeneous N -intertwined
deterministic model (5), the infectious disease will die out when λmax(BA − D) ≤ 0. Oth-
erwise, an outbreak will occur. Here, D = diag(δ1, δ2, . . . , δN ), B = diag(β1, β2, . . . , βN ),
and A is the adjacency matrix of the underlying network. For a comprehensive review of
deterministic epidemic models, their “outbreak” thresholds and stability properties, one can
refer to [97,101].

2.1.3 Stochastic Models

In this subsection, we present several well-known stochastic epidemic models based on SIS
compartment models. The counterparts for the SIR type of epidemics can be formulated by
adding a new compartment R and describing the transition rule between compartments S, I,
and R. First, we consider stochastic epidemic models without network structures, which we
refer to as stochastic population models.

Consider a populationof N individuals.Recall that the rate of infected individuals infecting
someone else is denoted by β. Each infected individual recovers and becomes susceptible at
rate δ. Assume that individuals encounter each other uniformly at random from the whole
population. Let x(t) be the number of infected individuals at time t . Then, {X(t)}t≥0 is a
Markov jump process with state space N, with transition rates βn(1 − n/N ) from state n to
state n + 1, and δn from state n to state n − 1. The transition probability hence is given as

P(X(t + �t) = n + 1| X(t) = n) = β

N
n(N − n)�t + o(�t),

P(X(t + �t) = n − 1|X(t) = n) = δn�t + o(�t),

P(X(t + �t) = n|X(t) = n) = 1 − �t

(
β

N
n(N − n) + δn

)

+ o(�t).

(6)

The stochastic population model (6) does not consider network structures and assumes that
each individual encounters each other uniformly. It is clear that the stochastic population
model (6) is a Markov jump process with an absorbing state X = 0, i.e., the state where no
individual is infected. When the process enters the absorbing state, the infection dies out.

Indeed, stochastic epidemic models with a finite population admit an absorbing state at
the origin (i.e., no infection) and a degenerate stationary distribution that has a probability
1 at the origin. The stochastic model gives a prediction that extinction will ultimately occur
for any given initial distribution, regardless of the value β/δ. However, the time to extinction
does change drastically with β/δ. When β/δ is distinctly less than 1, the “die-out” time is
small and almost independent of β/δ. However, the “die-out” time increases exponentially
in the number of population N if β/δ is distinctly larger than 1 [76]. The “die-out” time can
last longer than the entire human history for a small population. Hence, the distribution of the
number of infected individuals during the long waiting time before extinction is close to the
distribution of the same random variable under the condition that extinction has not occurred
[94]. This is called the quasi-stationary distribution of the stochastic model. Analyzing the
quasi-stationary distribution for various stochastic models becomes the focus of many papers
[6,76,94].

Another common result in the studies of stochastic epidemic models dwells is to deter-
mine the mean-field deterministic model associated with the stochastic model when the
population becomes large. Indeed, as N goes to infinity, the trajectory t → X(t)/N con-



14 Dynamic Games and Applications (2022) 12:7–48

verges to the solution I (t) of the Kermack and McKendrick deterministic model (1), i.e.,
limn→∞ sup0≤t≤T |X(t)/N − I (t)| = 0 almost surely. The proof of the convergence is
underpinned by the well-known Kurtz’s theorem. One can refer to Section 5.3 of [29] for
more details.

We now introduce the stochastic network models that incorporate network structures.
Define Xi (t) as the epidemic state of individual i . The individual is infected if xi (t), and
healthy (susceptible) if Xi (t) = 0. Infected individuals recover at rate δ, while susceptible
individuals become infected at rate β

∑N
j=1 ai j X j , i.e., the product of the infection rate and

the number of infected neighbors. Let X̄(t) = (X1(t), . . . , XN (t))T be the entire epidemic
state of the whole population. The SIS stochastic network model can be expressed by the
following Markov process:

P(Xi (t + �t) = 0| Xi (t) = 1, X̄(t)) = δ�t + o(�t),

P(Xi (t + �t) = 1| Xi (t) = 0, X̄(t)) = β

N∑

j=1

ai j X j (t)�t + o(�t),
(7)

for i = 1, 2, . . . , N . The stochastic network model (7) has 2N states among which there is
an absorbing state (i.e., a state where no individual is infected) reachable from any state X̄(t)
with non-zero probability. Hence, this model indicates that the epidemic will die out almost
surely in finite time. A more meaningful way to describe the spreading process is through
probabilistic quantities. Indeed, the probability that the epidemic will not die out at time t is
bounded as follows [29]

P(X̄(t) = 0) ≤ exp ((βλmax(A) − δ)t)

√
√
√
√N

N∑

i=1

Xi (0), (8)

where A is the adjacency matrix of the underlying network, λmax(A) is its spectral radius.
From (8), how fast the epidemic will die out depends on the effective spreading rate τ :=β/δ

and the spectral radius of the underlying network. Let T denote the time to absorption state
(the time when the epidemic dies out). An application of (8) leads to the results regarding the
expected extinction of the epidemic [29]: Given arbitrary initial condition X̄(0) ∈ {0, 1}N ,
if τ < 1/(λmax(A)),

E[T ] ≤ log N + 1

δ − βλmax(A)
. (9)

If τ ≥ 1/(λmax(A)), the expected extinction time increases exponentially as the number of
individuals N increases, i.e.,E[T ] = O(cN ), where c depends on the effective spreading rate
τ and the network structure [40]. Loosely speaking, the spectral radius λmax(A) quantifies
“how tightly the underlying network is connected”. The results (8) and (9) align well with
the intuition that it is easier for an infectious disease to grow on a more tightly connected
network. Letting �t goes to zero, the dynamics of E[Xi (t)] can be written as

Ė[Xi (t)] = E

⎡

⎣(1 − Xi (t))β
N∑

j=1

ai j X j (t)

⎤

⎦ − δE[Xi (t)], i = 1, 2, . . . , N . (10)

Alleviating the complication of the term E[Xi (t)X j (t)] by assuming E[Xi (t)X j (t)] =
E[Xi (t)]E[X j (t)] for all i = j , one can recover from (10) the N -intertwined determin-
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istic model (4), which re-states below:

ṗi = [1 − pi (t)]β
N∑

j=1

ai j p j (t) − δ pi (t), i = 1, 2, . . . , N .

Since Xi (t) ∈ {0, 1}, pi (t):=E[Xi (t)] = P(Xi (t) = 1) represents the probability that
individual i is infected at time t . SinceE[Xi (t)X j (t)] = E[Xi (t)]E[X j (t)] is not necessarily
true, the N -intertwined deterministic model (4) serves as an approximation of the stochastic
network model (7). Indeed, it is shown that the expected values pi in (4) are upper bounds on
the actual probabilities given by (7) [22,97,102,134]. Furthermore, [133] investigates how
accurate the deterministic approximations (4) are in describing the stochastic model (7).

So far, we have introducedmain stochastic and deterministic epidemicmodels that arewell
studied in the literature. To offer an overview of these models and their connection, in Fig. 2,
we present an illustrative taxonomy of the epidemic models we introduced so far. Apart from
models that are based on Markov processes and ODEs, there are epidemic models based
on stochastic differential equations [5,46], purely data-driven approaches [26], or spatial
modeling [63,111,116,132]. Even though the focus of this review is on actual virus epidemics,
there has been an abundant number of papers studying the spread ofmalware, Trojans, worms
on mobile wireless networks [7,9,74], social networks [8,88,95], Delay Tolerant Networks
[4,100], general computer network [80]. These papers introducedmany useful techniques and
insightful results applied to analyzing models of actual epidemics [7,74,80]. In this review,
wewill introduce several papers that do not necessarily focus on actual epidemics but provide
useful insights for models of actual epidemics [66,70,73,129,130,148].

With a basic understanding of the epidemic spreading processes and their stochastic and
deterministic modeling, the next section introduces how decisions can be made based on
these models and how decision-making can in turn affect the spreading processes.

2.2 DecisionModels

The epidemic models introduced in the previous subsection have described the spreading
process when there is no human intervention. In practice, once an epidemic starts to prevail,
human will reacts accordingly by taking interventions. The human intervention creates an
considerable impact on the spreading processes. Hence, the modeling of infectious diseases
needs to take it into consideration to provide a consolidated understanding of the epidemic
spreading processes in the human population. To better understand epidemic spreading pro-
cesses in human population, we introduce a holistic framework that incorporates epidemic
models and decision models, illustrated in Fig. 1.

2.2.1 What Interventions to Take?

In the real world, different entities play different roles in making decisions to combat
the spread of the disease. Such entities can be individuals, households, and organi-
zations. Decision making consists of the choices of individuals and the strategies of
stakeholders at different hierarchical levels. Decision models considered in the existing lit-
erature mainly consider two types of decision-makers: a central planner [12,13,25,27,28,54,
57,66,73,75,81,82,87,97,98,103,107,108,112,122,136,139–142,144,146,148], which works
for social benefits by conducting mechanism design and/or applying enforceable mea-
sures directly to the general public, and a collection of individuals with various types
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Fig. 2 A taxonomic summary of well-known epidemic models and their connection

[2,13,16,21,27,30,35,36,50,56,59,65,66,114,127,129,130,145] who have their own goals.
Considering only one central planner simplifies the case in the real world and allowsmodelers
to focus on a particular aspect of decision making amid the epidemic and derive results that
explain certain phenomena.

Decisions makers can take either non-pharmaceutical interventions (NPIs) or pharmaceu-
tical interventions or both. For a central planner, non-pharmaceutical interventions include
but not limited to requiring mandatory social distancing, enforcing lockdown, quarantining
infected individuals, and deploying protective resources such as masks, gloves, gowns, and
testing kits. Pharmaceutical interventions are related with the availability of vaccines or anti-
dotes. A central planner’s decision may involve vaccine distributions, antidote allocations,
treatment prioritization, etc. For individuals, possible non-pharmaceutical interventions are
wearing a mask, practicing social distancing, self-quarantine, etc. Pharmaceutical interven-
tions, such as getting vaccinated, seeking for treatment, securing an antidote, are usually
adopted by individuals to protect themselves in the epidemic.

2.2.2 How are Interventions Modeled?

To understand the coupling between the decision models and the epidemic models, we need
to figure out how non-pharmaceutical and pharmaceutical interventions can be modeled and
incorporated into the epidemic models. Generally, non-pharmaceutical interventions help
curb the spreading by either reducing the interaction between individuals (e.g., avoiding
crowds, social distancing, lockdown, and quarantine) or utilizing protective resources (e.g.,
wearing a mask and frequent use of hand sanitizer).

In networked epidemic models such as the N -intertwined deterministic model (4) and the
stochastic network model (7), the interaction between individuals is usually captured by the
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network topology. In an unweighted network, the adjacency element ai j = 1means that there
exist interactions between individual i and individual j . Otherwise, ai j = 0. Some existing
papers use the adjacency elements ai j ∈ {0, 1} to describe strict measures that completely
cut down the interaction between individuals such as lockdown and quarantine [31,139,142].
For example, if individual i is quarantined, then ai j = 0 for all j ∈ N . To capture the effect
of measures do not require complete isolation such as social distancing, several papers have
considered weighted networks to describe the intensity of interactions [66,108]. For example,
[66] uses a weight coefficientwi j ∈ [0, 1] to describe the intensity of the interaction between
individual i and j . In epidemic models that do not capture the complete topology (e.g., the
Kermack andMcKendrick model (1), the Kerphart andWhite model (2), the model of Pastor-
Satorras et al. (3), and the stochastic population model (6)), the reduced interaction between
individuals is modeled by a scaled infection rate αβ, where α ∈ [0, 1] is the scaling factor
and β is the normal infection rate when there is no intervention [12,27,75,103,107,114].
For example, in [75], α captures how well people practice social distancing. The better
people practice social distancing, the smaller the factor α is. An alternative way of modeling
interventions such as lockdown and quarantine is to create a new compartment [32,81,144].
In [81], the central planner decides the number of infected individuals to be quarantined to
curb the spreading. The authors introduce a new compartment called ‘Quarantine’ to model
infected individuals being selected for quarantine. Once individuals are quarantined, they
will not infect susceptible individuals and will re-enter the Susceptible compartment after
recovery.

Utilizing protective resources such as wearing a mask and using hand sanitizer helps
individuals protect themselves from infection without reducing their interaction with other
individuals. Such interventions are also captured by a scaled infection rate αβ [97,98] with
α ∈ [0, 1], which describes the fact that when contacting infected individuals while wearing
a mask, susceptible individuals will less likely to be infected.

Pharmaceutical interventions refer to the use of preventive medicines, vaccines, antidotes,
or effective treatment methods when available. One example of preventive medicines is pre-
exposure prophylaxis, which is proved effective in limiting HIV spread [77,113]. Preventive
medicines lower the infection rate β of the target diseases. Individuals need frequent use of
the medicine (e.g., daily or twice a day) to maintain a lower rate of infection to the disease.
Preventive medicines protect individuals for a shorter period than vaccines [113]. Individuals
can prolong the protection by constantly taking preventive medicines. Hence, to model using
preventive medicines as an intervention, modelers use different ways to describe the cost and
inconvenience of using preventive medicines than getting a vaccine. Many researchers have
studied the effect of vaccination on the spreading process [2,11,16,49,59,82,86,112,129],
which can be modeled in several ways. One way is to reduce the infection rate between an
infectious and a vaccinated individual to βvac < β while those who are not vaccinated suffer
a higher infection rate β [2,11,16,59,82,112]. How small βvac is depends on the efficacy of
the vaccine distributed. Another way to create a new compartment called ‘Vaccinated’ and
the rate at which individuals exit this compartment captures the protection duration of the
vaccines[1,86]. The use of antidotes and the deployment of mass treatment accelerate the
recovery process. As a result, The use of antidotes and the deployment of mass treatment are
usually modeled by a recovery rate δ̄ higher than the natural recovery rate δ [25].

2.2.3 When are Interventions Taken?

Timing plays a significant role in the coupling between the epidemic spreading pro-
cesses and the decision models. Depending on when decisions are made, decision-
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making can be categories into pre-epidemic decision-making [20,51,53,57,97,112,123,130],
during-epidemic decision-making [2,3,16,21,25,27,28,30,31,34,54–56,59,66,73,81,82,84,
87,97,107,108,114,120,122,127,129,139,142,145], and post-epidemic decision-making[19,
66,106,142]. Pre-epidemic decision-making refers to the decisions made before an epidemic
happens or at the beginning of the pandemic.Most papers focus on network design/formation
problems in which a virus resistant networkwith guaranteed performance is designed/formed
[20,57,97,130]. Some researchers study the optimal design of an epidemic surveillance sys-
tem on complex networks that helps detect an epidemic at an early stage [51,53,123]. Early
epidemic detection allows a central planner to kill the spreading at its infancy. Post-epidemic
decision-making happens at the very end of an epidemic or after an epidemic dies out. The
post-epidemic decision-making addresses problems such as how to safely lift restrictions,
how to reverse the interventions taken during the epidemic season [19,66,106,142].

This review focuses on during-epidemic decision-making problems where decisions are
madewhile an epidemic is present. The dynamics of the epidemic spreading processes and the
dynamics of the decision adaptation may evolve at different time scales. Some interventions
such as getting vaccinated (if one obtains life-long protection from the vaccine), taking
an antidote, and distributing curing resources are irreversible [16,56,59,87,129]. For such
interventions, decisions were only made once. In other studies, authors assume that decisions
are made once and for all and remain fixed over the spreading process or that decisions are
made at a much smaller frequency than the epidemic spreading process [25,107,120]. These
assumptions and the irreversibility of some interventionsmake it possible to formulate a static
optimization [25,87] or game [16,56,59,107,120,129] problem to study the decision-making
during the epidemic spreading. The objective functions of these static optimizations or game
problems only involve the limiting behavior of the epidemicmodels (1)–(7), e.g., the infection
level at equilibria (when the epidemicmodel reaches a steady state) [16,25,120,129], whether
the threshold condition is met (i.e., whether the epidemic will eventually die out) [97].

If the epidemic spreading processes and the decision models evolve at the same time
scale, adaptive strategies are employed in which the decisions are adapted at the same pace
as the epidemic propagates. For example, a central planner distributes testing kits based on
the daily infection data. This creates a real-time feedback loop in the human-in-the-loop
epidemic framework shown in Fig. 1. In this case, individuals take interventions such as
whether to wear a mask, conduct social distancing, or stay self-quarantined based on cur-
rently perceived information; the central planner adapts his/her interventions according to
the observed infection status of the whole population in real-time. The strategies of indi-
viduals and the central planner is represented by a map that maps the information they
received so far to an action that describes the interventions being taken. Depending on the
choice of epidemic models, researchers employ different tools to study the human-in-the-
loop epidemic framework depicted in Fig. 1. When deterministic models are employed to
describe the epidemic spreading processes, optimal control [27,28,54,81,97,139], differential
game [27,66,73,114,122], or evolutionary game theory [127] have been applied to study the
human-in-the-loop epidemic framework. When stochastic models are used, the human-in-
the-loop epidemic framework is often modeled by Markov decision processes [41,108,143]
and stochastic games [3,30,31,55]. Some research papers consider seasonal epidemics and
at each epidemic season, decisions are made once. People adapt their decisions based on the
payoff of the prior seasonal epidemic. This type of decision-making problem under seasonal
epidemics is solved by analyzing repeated games [21,84] or evolutionary games [84].
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2.2.4 Who are the Decision-Makers?

For the human-in-the-loop epidemic framework, decision-makers usually involve a central
planner that represents the central authority and individuals that represent the general public
[66]. The central planner can be an effective central government when fighting against an
epidemic, or a network operator whose users are obliged to abide by the company security
policy. An individual can be an individual citizen of a society [134], a local community [33],
public authorities of different countries [85] or a user in a computer network [148].

A central planner cares about the welfare of the whole population such as the number of
infected individuals in the entire population, the well-being of the economy [12,13,25,27,28,
54,57,66,73,75,81,82,87,97,98,103,107,108,112,122,136,139–142,144,146,148]. Individu-
als concern about their own interests, which include his/her own infection risk, the
inconvenience of wearing a mask, and the monetary cost of getting an effective treatment
[2,13,16,21,27,30,35,36,50,56,59,65,66,114,127,129,130,145]. Due to the selfishness of the
individuals, the goal of an individual is not well aligned and sometimes conflicts with the
goal of a central planner [31,66]. For example, the infected individuals, with no infection risk
anymore, might be reluctant to take preemptive measures to avoid spreading the disease [31].
It is shown that there will be an increase in the number of infected individuals if they optimize
for their own benefits instead of complying with the rules applied by the central planner [66].
Indeed, enforcing a strict protocol can be costly and sometimes impossible for the central
planner. As a result, central authorities should ask themselves whether they can offer the
public sufficient incentives that are acceptable by the individuals and sufficiently strong to
combat the epidemic. A recent example is that, to reach herd immunity, the Ohio state of the
USA will give 5 people 1 million each in COVID-19 vaccine lottery to combat the hesitancy
of getting a COVID-19 vaccine [47]. Hence, instead of solving an optimization problem or a
game problem directly, some papers have looked into the mechanism design problem or the
information design problem [147], on behalf of the central planner, that incorporates both
the global state of the whole population and the individual’s choice into designing incentives
to combat the epidemic [13,21,34,66,82,99,107].

2.2.5 Information Matters

Decision-makers rely on what information they have to make decisions. The information
available to decision-makers at the time when the decision is made plays a crucial role in the
human-in-the-loop epidemic framework [28]. For example, the severity of COVID-19 infec-
tion, perception of government responses, media coverage, acceptance of COVID-19-related
conspiracy theories lead to a change of people’s attitude about wearing masks during the
COVID-19 pandemic [37,117,119]. Many studies assume that perfect information, includ-
ing the health status of every individual and complete knowledge of the network topology,
is available to decision-makers at all times [2,27,30,31,34,59,81,97,122]. However, in epi-
demics, acquiring perfect, accurate, and timely information regarding the spreading process is
arduous if not impossible [18]. For example, obtaining an estimate of the number of infected
individuals requires testing at scale, which can be challenging to implement in rural areas
[90]. Also, testing results can be delayed due to a high testing demand and a long sample anal-
ysis time. Hence, some researchers investigated the decision-making based on an estimated
disease prevalence from available data [55,108,139] and the effect of delayed information
in decision-making [149]. In game theory, a specific type of strategic games that deal with
incomplete information are called Bayesian games. A few papers have leveraged the concept
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of Bayesian games to deal with the incomplete information when only part of the information
or some statistics about the information are revealed to the players [48,131].

Individuals can receive information from mass media (global broadcasters) such as TV,
radio, newspaper, and official accounts on social media and/or from local contacts such as
friends, family members, and connections on social media. During an epidemic, individuals
may receive two levels of information: one is statistical information that describes the overall
prevalence of the epidemic such the number of positive cases, the number of hospitalized
patients, and the death toll; the other is local information such as whether people with close
connections are infected or not, risk level in one’s neighborhood [45,78]. Wang et al. [138],
Granell et al. [45], and Funk et al. [39] investigate how theword-of-mouth type of information
spreading affects individuals’ behavior and hence, alters the spreading processes.

Individuals may suffer from inaccurate information from unreliable resources. An exam-
ple would be information obtained from social media or by word of mouth in a spatially or
culturally isolated community or neighborhood. The perceived information of an individual
may not necessarily reflect the actual prevalence of the infectious disease. Such incomplete
or biased information about the epidemic together with strong prior beliefs may impede
individuals from taking rational and reasonable responses to protect themselves and others
[114]. Information released by central authorities also plays a significant role in individu-
als’ decision-making. Responsible central authorities should therefore not only fight against
the epidemic-related misinformation but also conduct information design to curb epidemic
spreading and even panic spreading.

3 Game-Theoretic Decision-Making in Epidemics

Game theory, in a nutshell, is a powerful mathematical tool of modeling how people make
strategic decisionswithin a group [15,38]. In the last decade, there has been a surge in research
studies in game-theoretic decision-making amid an epidemic [2,10,13,16,18,21,23,27,30,31,
34,50,55–57,59,65–67,73,78,82,84,99,107,114,115,120,122,127,129,130,141,145,146].The
reason behind the surge is three-fold.

First, centralized decision-making becomes less practical for large-scale networked sys-
tems such as human contact networks and most computer networks. Computing centralized
protection strategies faces the challenge of scalability when they are applied to very large
networks [56,87,142]. Also, it requires a high level of information granularity for a cen-
tral authority to make satisfactory centralized decisions for most individuals. The central
authority has to gather a huge amount of local information, which not only is challenging
to implement but also creates privacy issues and management overheads. In contrast, decen-
tralized decision-making is more reliable and practical since local entities decide their own
protection strategies satisfying high-level guidelines provided by the central authority. Sec-
ond, Self-interested individuals in the midst of the epidemic might not be willing to comply
with the suggested protocols [13,16]. This is because, as we have explained in Sect. 2.2.4,
there is a misalignment of individual interests. Individuals concern less about and societal
interests that are major concerns of the central authority. There also exists a misalignment
of interests between individuals and interdependencies among the individuals. Each individ-
ual has choices, but the payoff for each choice depends on choices made by others. Third,
game theory, as a mature and broad field, provides a plethora of useful solution concepts
and analytical techniques that can model and explain human decision-making. For example,
the self-interested strategy maximizing individual payoff is called the Nash equilibrium in
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game theory [15]. Through a Stackelberg game framework, a central authority can design
incentives for the public individuals to combat the epidemic [13]. Many infectious disease
models usually do not incorporate human behaviors that change as the epidemic evolves and
the information spreads over the network. Dynamic game theory, which has been applied in
many dynamic settings such as management science [14], labor economics [83], and cyber-
security [61], delivers a powerful paradigm to capture dynamic human behaviors [16]. We
start the introduction of game-theoretic models in epidemics by presenting a taxonomy in
the next section.

3.1 AMulti-dimensional Taxonomy of Game-Theoretic Models in Epidemics

The synthesis of game-theoretic models and epidemic models roots in the coupling between
decisionmodels and epidemicmodels. The choice of game-theoreticmodels depends onmul-
tiple factors such as who the decision-makers are, what interventions decision-makers can
take, and what information decision-makers know. Existing literature mainly studied the fol-
lowing five types of games: static games [57–59,65,99,107,120,129,130,141], discrete-time
stochastic games [30,31,78], differential games [13,27,65,66,73,114,122], repeated games
[2,21,60,82], and evolutionary games [10,50,110,115,145].

In static game frameworks, researchers have incorporated the epidemic models by only
considering the limiting behavior of these models [57,59,99,120,129,130,141]. Here, we use
[99] as an example. In [99], J. Omic et al. captured the risk of infection using the limiting
behavior of the heterogeneous N -intertwined deterministic model (5). Let pi∞ be the steady
state of model (5) for each individual i ∈ N . Letting ṗi = 0, one obtains

pi∞ =
∑N

j=1 ai j p j∞
βi

∑N
j=1 ai j Pj∞ + δi

, for i ∈ N . (11)

In [99], each individual decides its own recovery rate by seeking treatment, having antidotes
to optimize the trade-off between the overhead invested in recovery ciδi and the penalty of
infection pi∞. Omic et al. [99] created a game with N players whose goals are to minimize
Ji (δi , δ−i ) = ciδi + pi∞. The coupling between individuals’ strategies is captured by the
limiting behavior of the epidemic model (11). Static game frameworks consider once-and-
for-all interventions which cannot be revoked and concern about the long-term outcomes
such as the infection risk at the steady-state, or whether the disease will die out eventually.

Discrete-time stochastic games and differential game frameworks are introduced to cap-
ture the transient behavior of the epidemic process and to model adaptive interventions. The
difference between Markov game frameworks and differential game frameworks lies in the
choice of epidemicmodels.Discrete-time stochastic game frameworks are built upon stochas-
tic epidemic models such as the stochastic population model (6) and the stochastic network
model (7) [30,31,78]. Differential game frameworks rely on deterministic epidemicmodels or
stochastic epidemicmodels that use stochastic differential equations to describe the dynamics
of the spreading processes [13,27,65,66,73,114,122]. Characterizing aNash equilibrium over
the whole horizon is prohibitive for discrete-time stochastic games when the number of indi-
viduals increases or the number of stages becomes large. Even structural results are difficult
to obtain. Hence, in [30,31], the authors introduce a concept called myopic Markov perfect
equilibrium (MMPE). The solution concept MMPE implies the assumption that individuals
maximize their current utility given the state of the disease ignoring their future risks of
infection and/or future costs of taking interventions in their current decision-making. This is
a reasonable assumption considering the computational complexity of accounting for future
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states of the disease during an epidemic. Lagos et al. [78] also adopted a similar solution
concept where only the current state and the next state of one’s infection are considered. For
differential game frameworks, the equilibrium can be calculated using the general methods
of Isaacs [68]. Using Pontryagin’s maximum principle, Reluga [114] studied the differential
game of social distancing and the spreading of an epidemic under the equilibrium; Khouzani
et al. [73] found the optimal way of dissemination security patches in wireless networks to
combat the spread of malware controlled by an adversary; Huang et al. [66] characterized
the optimal way of reducing connectivity to keep the balance between mitigating the virus
and maintaining the economy.

Repeated game frameworks are used to model seasonal epidemics which appear periodi-
cally [21,82]. Interventions will be taken repeatedly at each epidemic season. For example,
to protect oneself from influenza, one needs to get a flu vaccine each flu season due to the
mutation of the virus or the protection time of a vaccine. Individuals adapt his/her behavior
based on the cost/payoff incurred last season. Different from differential games and discrete-
time stochastic game frameworks, repeated game frameworks do not include the transient
behavior of the spreading process [2,60].

One common way of individuals making ‘best-response’ decisions that give the best
immediate or long-term payoff. This way of decision-making is adopted by differential
game, stochastic game, and repeated game frameworks. Another is the use of ‘imitation’
dynamics where individuals copy the behavior that is previously or currently most successful
[115]. The ‘imitation’ dynamics governing the time evolution of the fractions of strategies
in the population is similar to the replicator dynamics of evolutionary game theory [110].
Evolutionary game theory has been adopted to model the human behavior of imitating other
individuals’ successful strategy by many previous studies [10,50,110,115,145]. In the evo-
lutionary game framework for epidemic modeling, the strategy dynamics is coupled with
the epidemic dynamics [50,115,145]. The focus of evolutionary game frameworks is on the
analysis of the coupled dynamics and the interpretation of the behavior of these dynamics
[10]. A detailed review of this branch of research can be found in [23].

Based on the interventions individuals adopt, game-theoretic models in epidemics
can be categorized into vaccination game [2,21,59,82,120,145], social distancing game
[13,27,43,65,66,78,107,114], quarantine game [10,55], andmask wearing game [107]. There
are also papers that study the adoption of preemptive interventions [30,31,145] and interven-
tions that changes the recovery rate [58,141]. Beyond human social networks, many papers
studied interventions that can curb the malware or virus spreading in computer networks
or wireless communication networks [50,60,65,66,73,99,122,129,130], such as network re-
forming [129,130], installing security patches [50,122], reducing the communication rate
[66,73], etc.

If all individuals practice socially distancing, wear masks, stick to stay-at-home orders,
the risk of infection and the infection level of the whole population will be reduced signif-
icantly. However, there always exist trade-offs and temptations to defect from the regimen.
Handwashing is tedious, wearing a mask is uncomfortable or annoying, and socializing is
necessary. When it comes to getting a vaccine, people express concerns about safety and side
effects. One commonality of most effective interventions usually exhibits the characteristics
that if one takes the intervention, he/her needs to pay for all the cost or inconvenience but
everyone else in the population will more or less benefit from his/her behavior. This charac-
teristic creates the coupling between individuals. For example, one can enjoy empty streets
and markets without having a higher risk of infection if most people stay at home. Those who
choose not to get a vaccine effectively reap the benefits of reduced virus transmission con-
tributed by the people who do opt for vaccination. This behavior is referred to as ‘free-riding’
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behavior [67].When a significant number of free rides appear, there will be a collective threat
to containing the virus.

Different interventions induce different costs and provide benefits in different ways. For
example,wearing amask gives immediate protection and is irreversible, hence induces instan-
taneous cost and benefit. Vaccination creates longer protection yet induces an immediate cost
such as making a payment for the vaccine and experiencing side effects. Hence, different
models were used to model different interventions. Vaccination games are usually modeled
by static games or repeated games due to the irreversible of getting a vaccine [2,21,59,120].
Revocable interventions such as quarantine, social distancing, andwearing amask are usually
modeled by differential games or stochastic games [13,27,66,78,114].

Another criterion to classify the literature is to consider the players of the game.
Most game-theoretic models in epidemics investigate the interplay between individuals
[2,16,18,21,23,24,27,30,31,50,55,56,59,66,67,78,82,84,114,115,120,129,130,145]. Individ-
uals can be completely selfish who maximize their own payoff via optimizing their own
payoff or imitating the most successful individuals [2,16,18,21,23,27,50,55,56,59,67,78,84,
114,115,145]. Some papers incorporate the effect of altruism into their game-theoretic mod-
els in which individuals are not completely selfish and care about the well-being of their
neighbors [24,30,31]. It is shown by Eksin et al. [31] that a little empathy can significantly
decrease the infection level of the whole population. The results in [24] by Chapman et
al. show that the central planner should promote vaccination as an act of altruism, thereby
boosting vaccine uptake beyond the Nash equilibrium and serving the common good. Several
papers examine the inefficiency of selfish acts of individuals and the inefficiency is quanti-
fied by the price of anarchy [2,66,82,120,129,130]. Results from these studies demonstrate
that individuals’ selfishness becomes a big hurdle to fight against infectious diseases. Hence,
some papers introduce the role of central authorities and study how central authorities should
create incentives/penalties to achieve social optimum [13,34,107]. Another strain of research
focuses on the interplay between a central authority and an adversary [73,122,141,146]. The
adversary aims to maximize the overall damage inflicted by the malware and the central
authority tries to find the best counter-measure policy to oppose the spread of the infection.
The conflicting goals between the players are usually captured by a zero-sum dynamic game.

3.2 A Fine-Grained Dynamic Game Framework for Human-in-the-Loop Epidemic
Modeling

In the existing literature, there is no consensus on which game-theoretic framework to study
human-in-the-loop epidemics. The integration between game-theoretic models and epidemic
models is done on a case-by-case basis depending on the players involved, what interventions
people take(see Sect. 2.2.1), when interventions are taken (see Sect. 2.2.3), what epidemic
models modelers choose (see Sect. 2.1), and the underlying network structure. Here, we
present a fine-grained dynamic game framework to describe the essence of human-in-the-
loop epidemic modeling.

We consider the following discrete-time Markov game with N players.

• PlayersWe consider a population of N individuals denoted byN and a central authority.
• The individual state space Each individual has a state from the finite set S. The state

indicates the health status of an individual. Elements in S may include susceptible state,
infected state, recovered state, and/or quarantined state, depending on the compartment
model being used and how interventions are modeled. The state of individual i at time t
is denoted by Xi (t) = {1, 2, . . . , |S|}. For example, if we consider an SI S model where
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individuals decide whether to get vaccinated, the state space S contains three elements
{1, 2, 3}, with Xi (t) = 1 (Xi (t) = 2, Xi (t) = 3) meaning individual i is susceptible
(infected, vaccinated respectively).
One can also introduce the concept of type in game theory into the human-in-the-loop
framework to capture different social, political, and other demographic groups.

• The population profile The global detailed description of the population’s health status
at time t is X̄(t) = (X1(t), . . . , XN (t))T ∈ SN . The population profile is denoted by
M(t) = (M1(t), M2(t), . . . , M|S|(t))T , where Ms(t) = (1/N )

∑N
i=1 1Xi (t)=s , indicat-

ing the proportion of individuals in state s. A central authority cares about the well-being
of the whole population, hence pays attention only to the population profileMs(t), s ∈ S.

• The individual action space Let A denote a set of possible actions individuals can take
to combat the virus when his/her state is s. Depending on which intervention is studied
(see Sect. 2.2.2), A can be either finite or continuum. At every time t , an individual
chooses an action Ai (t) ∈ A. The action profile of the whole population is denoted by
Ā(t) = (A1(t), . . . , AN (t))T . The action set can be state-dependent if necessary.

• The transition kernel The epidemic process (X̄(t))t∈N is a Markov Process once the
sequence of actions taken by individuals is fixed. Let 
 be the transition kernel, namely

 is a mapping SN ×SN ×AN → [0, 1]. Given the population infection profile X̄(t) at
time t , if individuals take their actions (Ai (t))i∈N , then at time t + 1, the global detailed
description of the population’s health status follows the distribution:

P(X̄(t + 1) = (s1, . . . , sN )T |X̄(t) = (x1, . . . , xN )T , Ā(t) = (a1, . . . , aN ))

= 
(x1, . . . , xN , s1, . . . , sN , a1, . . . , aN ).

The transition kernel is decided by the epidemic models (see Sect. 2.1.3) and the inter-
ventions the actions represent (see Sect. 2.2.2). For example, the transition kernel can
be constructed using the SIS networked stochastic model (7) or other epidemic models.
For example, if the actions of individual i include ai ∈ {0, 1} with ai = 0 representing
individual i is self-quarantined and ai = 1 representing individual i staying normal, then
the transition kernel can be constructed by

P(Xi (t + 1) = 0| Xi (t) = 1, X̄(t), Ai (t) = ai ) = δ�t + o(�t),

P(Xi (t + 1) = 1| Xi (t) = 0, X̄(t), Ai (t) = ai ) = βai

N∑

j=1

ai j X j (t)�t + o(�t),
(12)

for i ∈ N . As we can see if all individuals brace for the epidemic by quarantining, i.e.,
Ai (t) = 0 for all i ∈ N for some t ∈ [t1, t2], the spreading will slow down at a fast rate
decided by δ. Not every individual has the inventive to do so.

• Costs The costs come from two sources: one is from the risk of catching the virus,
another is from the interventions being taken. Most interventions/measures come with
either monetary costs or inconvenience. Handwashing is tedious, wearing a mask is
uncomfortable or annoying, and socializing is necessary. The instant cost at time t for
individual i hence depends on his/her health status (state), the interventions he/she takes
(action), and/or the states of other individuals. Formally,

Gi (t) = gsi (Xi (t), Ai (t)) + g f
i (XNi , ANi ) + gai (X̄(t), Ā(t)),

in which there exits three levels of altruism. The cost function gsi captures the selfishness

of individual i , where the superscript smeans selfishness. If the second cost function g f
i is

added, it means individual i care about his/her neighbors (friends, family members). The
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superscript f of g f
i means friends or family. The highest level of altruism is captured by

gai meaning individual i cares about every individual in the population. For a completely

selfish individual g f
i (·, ·) ≡ 0 and gai (·, ·) ≡ 0. Modelers can also make gsi , g

f
i , and gai

time dependent if necessary.
• Information and Strategies The information set of individual i at time t is denoted by

Ii (t). Individual may not every detail about the whole population. He/shemay only know
his own health status and the population profile broadcasted by the central authority, i.e.,
Ii (t) = {Xi (0), . . . , Xi (t), M(0), . . . , M(t)}. Or individual i may only know infor-
mation about his neighboring individuals, which gives Ii (t) = {XNi (0), . . . , XNi (t)}.
Individuals make decisions based off of the information available to them. The rules
individuals follow to make decisions is called strategies. The strategy of individual i , σi ,
is a map from the information space and the time space to his/her action space, meaning
that the action of individual i is chosen as Ai (t) = σi (Ii (t), t).

Remark 1 When there is a presence of a central authority, the central authority cares about the
population profile instead of the health status of a particular individual. For example, the goals
of the central authority might be to suppress the proportion of infected individuals, reduce
the death toll on the general public, and boost up the uptake of vaccines. These metrics can
all be reflected in the population profile M(t) for t = 0, 1, 2, . . .. Hence, the cost function of
the central authority can be a function of M(t), i.e., Gc(t) = gc(M(t)). There are two paths
the central authority can follow to achieve its goals. The first is designing a penalty/reward
function gp

i (Xi (t), Ai (t)) that rewards (punish) individuals who comply with (violate) the
suggested rules such as social distancing, quarantine, or getting vaccinated. The second is
through information design such as promoting altruism, raising awareness, health education,
etc.

The gamebetween individuals unfolds over a finite or infinite sequence of stages,where the
number of stages is called the horizon of the game. Infinite horizon game models epidemics
that persist for decades [114]. Some papers consider finite horizon game where the terminal
time is decided by when the vaccines are widely available [23,66,115]. The overall objective,
for each individual, is to minimize the expected sum of costs he/she receives during the
epidemic.

Solving such a fine-grained stochastic game is difficult, if not prohibitive, under general
solution concepts. The difficulties emerge from three facts. The first is that as the number
of individuals N increases, the size of the state space |S|N for the global state X̄ increases
exponentially. In the human population, the number of individuals in a community ranges
from thousands to millions. Hence, analyzing such an enormous number of individuals under
the fine-grained dynamic game framework becomes impossible. The second is that individ-
uals do not know the exact information of the whole population X̄(t) for every t . For some
epidemics, it is difficult for individuals to know their own state due to the fact that some
infectious diseases do not cause symptoms for some individuals or cause common symptoms
that are shared with other diseases. Also to gather information regarding the population pro-
file M(t) for each time t and broadcast it to the individuals, the central authority needs to
arrange large-scale surveys, polls, and diagnostic tests on a daily or weekly basis. Even so, the
population profile M(t) can only be estimated using gathered data. This partial information
situation creates a partially observable stochastic game. It is intractable to compute Nash
or other reasonable strategies for such partially observable stochastic games in most general
cases [52]. The third is if the transition kernel is described by a networked stochastic epidemic
model such as (12), the state dynamics of one individual is coupled directly or indirectly with
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every other individual through the underlying network. The fact makes it impossible to obtain
an appropriate strategy by decoupling [31]. Hence, we propose this fine-grained stochastic
game framework to describe the quintessences of the integration model into the epidemic
spreading process, with no intention to solve it.

Existing literature usually proposes less fine-grained game-theoretic frameworks in order
to obtain meaningful results that help understand the spreading of epidemics under human
responses. These papers generalize or simplify the fine-grained dynamic gamemainly in three
ways. One is to usemean-field techniques by assuming the transition probability of each indi-
vidual’s state only couples with the population profile M(t) and some indistinguishability
assumptions [41,79,114,125,126]. The second is to study a simplified solution concept where
each individual considers costs over only a limited number of stages [30,31,78]. The third
is to consider a continuous N -intertwined epidemic model (4), rather than a stochastic one,
where a dynamic game is built upon [66] or to apply mean-field techniques in a homogeneous
epidemic model such as the Kermack and McKendrick model (1) [114]. In the next subsec-
tion, we present three representative papers that proposed simplified frameworks to deliver
meaningful results by leveraging the above-mentioned methods. These frameworks choose
totally different epidemic models and have their unique ways of integrating game-theoretic
decision-making into these epidemic models.

3.3 Social Distancing Gamewith Homogeneous SIR Epidemic Model [114]

In [114], T. Reluga studies the effect of social distancing on the spreading of SIR type
of infectious diseases. The author uses a homogeneous deterministic epidemic model: the
Kermack and McKendrick model (1). A differential game framework is proposed in which
the interplay between individuals is simplified as the interaction between a specific individual
and the aggregate behavior of other individuals.

3.3.1 Modeling

How social distancing is modeled Let a be one specific individual’s strategy of daily invest-
ment in social distancing. The population strategy as is the aggregate daily investment in
social distancing by the population. Borrowing the idea from mean-field games, in the limit
of infinitely large populations, i.e., N → ∞, a, and as are independent strategies because
changes in one individual’s behavior will have a negligible effect on the average behav-
ior. The effectiveness of investment in social distancing is captured by σ(as), which is the
infection rate given an aggregate investment in social distancing practices. Without loss of
generality, we set β(0) = 1 when there is no investment. To model the diminishing returns
with increasing investment, the author assumes that σ(as) is convex and given by

σ(a) = 1

1 + ma
,

with the maximum efficiency of social distancing σ ′(0) = −m.
Epidemic Models Epidemic usually start with one or a few infected cases, so I (0) ≈ 0.

The macroscopic behavior of the spreading process under the aggregate social distancing
investment as can be captured by a normalized SIR version of the Kermack and McKendrick
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epidemic model:

Ṡ = −σ(as)SI

İ = σ(as)SI − I (t),

Ṙ = I (t),

(13)

where the infection rate and the recovery rate are normalized in order to focus on the effect
of social distancing practices on the spreading process.

The cost function The total cost of the epidemic to the population, J , includes the daily
costs from infection as S, the daily costs of infection I :

J = −
∫ t f

0
(as S + I )e−htdt − I (t f )e−ht f

1 + h
(14)

where e−ht is a discount term with h being the discount rate and the last term is a salvage
term representing the cumulative costs associated with individuals are sick at the time mass
vaccination occurs (t f ).

The evolution of individual states The premise of the game is that at each point in the
epidemic, individuals can choose to pay a cost associated with social distancing in exchange
for a reduction in their risk of infection. Let p(t) ∈ �3 be the probabilities that an individual
is in the susceptible, infected, or recovered state at time t. The probabilities p(t) evolve
according to the Markov process

ṗ = P(t; a)p, (15)

where a is the individual’s daily investment in social distancing and the transition-rate matrix

P(t; a) =
⎡

⎣
−σ(a)I 0 0
σ(a)I −1 0
0 1 0

⎤

⎦ .

The coupling between the population profile (S, I , R) and the individual profile p(t) is
described by the two processes (13) and (15). The individual risk of infection depends on
his/her investment in social distancing a and the infection level of the whole population I .

The values of states Using the ideas of Isaacs [68], we calculate expected present val-
ues of each state at each time, conditional on the investment in social distancing. The
expected present value is the average value one expects after accounting for the proba-
bilities of all future events, and discounting future costs relative to immediate costs. Let
V(t; a, as) = (VS(t; a, as), VI (t; a, as), VR(t; a, as)) denote the expected present values
with VS(t; a, as), VI (t; a, as), and VR(t; a, as) representing the expected present values of
being in the susceptible, infected, or removed state at time t when using strategy a in a
population using strategy as . The expected present valuesV evolves according to the adjoint
equations

−V̇ = (P(t; a)T − hId)V + v,

where vT (t; a) = (−σ(a),−1, 0) incorporates the individualized cost of (14) into the
expected present values V(t; a, as). Since the dynamics of V is independent of R, there
is no need to consider recovered individuals further. Further simplifying the dynamics of V
by taking h = 0 (not discount) and VI = −1 (fixed expected value at infected state), one
obtains

− V̇S = −(1 + VS)σ (a)I − a, (16)
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which evolves backward in time with boundary condition VS(t f ) = 0. If everyone else
invest heavily in social distancing, the individual can become a free rider that earns the
benefit (value) without having to invest too much in social distancing because the infection
level I will remain low. To find a balanced social distancing strategy (Nash strategy), one
can simply focuses on (13) and (16).

3.3.2 Analysis

Tofind a balanced strategy is to find the best strategy to play, given that all the other individuals
are also attempting to do so. Given such context, a Nash equilibrium solution becomes an
appropriate solution concept for the differential game formulated in Sect. 3.3.1.

Definition 1 Given the expected value VS(t; a, as) in the susceptible state and the associated
population level spreading dynamics (13), a∗ is aNash equilibrium if for any possible strategy
a, VS(0; a, a∗) ≤ VS(0; a∗, a∗).

A Nash equilibrium is a subgame perfect equilibrium if it is also a Nash equilibrium at every
state the system may pass through. Indeed, the Nash equilibrium can be obtained by finding
the investment that maximizes the rate of increase in the individual’s expected value.

Lemma 1 If a∗(VS, I ) is a subgame perfect equilibrium, then it satisfies the maximum prin-
ciple

a∗(VS, I ) = argmax
a≥0

−(1 + VS)σ (a)I − a,

when as = a∗ everywhere.

One can solve for a∗(Vs, I ), if σ(a) behaves well.

Theorem 1 If σ(a) is differentiable, decreasing, and strictly convex, then a∗ is uniquely
defined by the relations

{
a∗ = 0 if − σ ′(0)I (1 + VS) ≤ 1,

−σ ′(a∗)I (1 + VS) = 1, otherwise.
(17)

From Theorem 1, one knows that at the Nash equilibrium, whether an individual invests in
social distancing depends on the maximum efficiency of social distancing β(0)′ = m, the
current infection level of the population I , and the expected value in susceptible state VS .
When an individual does invest in social distancing, an individual tends to invest more if any
of the following values is higher: the efficiency of social distancing, the current infection
level I , the value of the susceptible state VS .

3.3.3 Highlighted Results

The authors investigate the instantaneous behavior a∗ given the expected value in susceptible
state VS , the infection level I , and the susceptible level S. Such results can be computed by
solving (17) and the results are shown in Fig. 3. From (17), we know that there are two types
of equilibrium strategies including no investment in social distancing (a∗ = 0, σ (a∗) = 1)
and positive investment in social distancing (a∗ > 0, σ (a∗) < 1). The first figure in Fig. 3 is a
contour plot in VS × I surface about the relative risk σ(a∗(VS, I )). The values attached to the
blue lines represent what the relative risks σ(a∗(VS, I )) are at the corresponding coordinates
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Fig. 3 [114] Contour plots of relative risk surface for equilibrium strategies with parameter m = 10

(VS, I ). The line with value 1 attached to it separates the region where the equilibrium
strategy will include no investment from the region where the equilibrium strategy requires
investment in social distancing. The feedback form of equilibrium strategies, transformed
from (VS, I ) coordinates to the (S, I ) coordinates of the phase-space is represented with
another contour plot in the second figure of Fig. 3.

The last few ‘survivors’ tend to social distance more As we expect, the left figure shows
that a larger value of the susceptible state VS induces a greater instantaneous social distancing.
From the right figure, one can see that as the number of susceptible individuals increases,
the investment in social distancing decreases, hence the individual’s infection rate increases
with less social distancing. One can also see that when only a small portion of the population
remains susceptible, the biggest investments in social distancing happens. That means the
last few ’survivors’ tend to social distance to brace for the infection.

Two scenarios are investigated in [114]. The first is the infinite horizon differential game
that gives the equilibrium behavior when there is never a vaccine and the epidemic spreads
until its natural end. The second is the finite-horizon problem that studies the individual
behavior in equilibrium when there will be a vaccine introduced at time t f . For the infinite-
horizon case, the epidemic spreading dynamics under the social distancing equilibrium and
in the absence of social distancing is plotted in Fig. 4.

Social distancing occurs later but ends sooner than the wide spreading of epidemics As
we can see from the top left figure in Fig. 4, under equilibrium social distancing, social
distancing is never used until part-way into the epidemic and ceases before the epidemic
fully dies out. That means at the beginning of the epidemic, individuals will not be alert to
take any interventions until the epidemic prevails. And social distancing practices are going
to be lifted before the epidemic completely ends when the situation gets better.

Social distancing leads to a smaller epidemic but prolongs the epidemicWhen comparing
the time series data on the top left figure and its counterpart on the bottom left figure of
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Fig. 4 [114] The spreading dynamics with equilibrium social distancing and without social distancing with
parameters R(0) = 4.46,m = 10

Fig. 4, one can observe that social distancing reduces the scale of the epidemic and prolongs
the prevalence of the epidemic. Even though social distancing prolongs the epidemic, prac-
ticing social distancing is still important since it helps ‘flatten the curve’. “flatten the curve”
reduces the number of cases that need intensive care at any given time, giving health-care
workers, hospitals, police, schools, and vaccine-developers time to prepare and respondwith-
out becoming overwhelmed. Essential facilities (e.g., hospitals and schools) can still function
normally with a tolerable level of infection. Slowing and spreading out the tidal wave of cases
will save lives. Flattening the curve keeps society going.

Now let’s shift the focus to the finite-horizon problem where vaccines are universally
available at a given time t f . As is shown in Fig. 5, at an equilibrium, social distancing will
last until the very time when vaccines are universally available. When the wide availability of
vaccines arrives sooner, social distancing begins sooner.When the vaccine becomes available
at t f = 8.6 (see the left plot in Fig. 5), individuals save 50% of the cost of infection per
capita by practicing social distancing. When the vaccine becomes available earlier, say when
t f = 6.5, 80% of the cost of infection can be saved per capita.

Social distancing enlarge the window of opportunity during which mass vaccine can
reduce the cost of the epidemic The earlier a vaccine becomes available, the less the whole
society suffers. If a vaccine becomes available at the late stage of the epidemic when most
individuals are recovered, the vaccine won’t help much reduce the transmission. There exists
a limited window during which large-scale vaccination can effectively cut down the cost of
infection at the population level. Numerical results in [114] show that equilibrium social
distancing can extend this limited window of opportunity.

3.3.4 Discussions

The modeling in [114] unravels the complexity of the fine-grained dynamic framework from
several aspects. The first is the use of a homogeneous SIR deterministic epidemic model:
the Kermack-McKendrick SIR model, in which the epidemic process is described by two
ordinary differential equations (R can be expressed as R = 1 − S − I ). The effect of
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Fig. 5 [114] The spreading dynamics when universal vaccination occur after a fixed time with parameters
R(0) = 3,m = 20, I (0) = 3 × 10−6

social distancing on the spreading process is captured by a scalar function σ(as) which is
homogeneous to all individuals. The spreading process enjoys a decreased infection rate as
the population invests more in social distancing. The use of such a homogeneous epidemic
model is a double-edged sword. On the one hand, homogeneous epidemic models make
analytical results more attainable, but on the other side, homogeneous epidemic models
need the assumption that the population is homogeneous and strongly mixed. However, we
know that the contact patterns among individuals are highly structured, with regular temporal,
spatial, and social correlations. The second is the decoupling of the direct connection between
an individual’s strategy a and the aggregate strategy of the population as . This allows one’s
risk of infection to depend only on the infection level of the population I , which implicitly
depends on as .

Realistically, mass vaccination cannot happen overnight as is assumed in the paper. Vac-
cination is usually rolled out continuously as it is proved to put into use. This effect can
be incorporated into the model by considering a time-dependent forcing. In this game, the
individual has complete information about the epidemic including the expected value and the
infection level of the whole population. However, in reality, incomplete information (biased
or inaccurate information) may drive human behavior away from the equilibria obtained in
this paper.

3.4 The Power of Empathy: AMarkov Game Under theMyopic Equilibrium [31]

In [31], Eksin et al. have proposed a Markov game framework using the contact network
stochastic epidemic model [96, Ch. 17] in which healthy individuals utilize protective mea-
sures to avoid contracting a disease and sick individuals utilize preemptive measures out of
empathy to avoid spreading a disease. A solution concept, called the myopic Markov perfect
equilibrium (MMPE), is introduced to model human behaviors, which also makes theoretical
results attainable for such a framework. Eksin et al. have shown that there is a critical level of
empathy by the sick individuals above which the infectious disease die out rapidly. Further,
they show that empathy among sick individuals is more effective than risk-aversion from
healthy individuals.
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3.4.1 Modeling

The epidemic model Eksin et al. considered a networked SIS stochastic epidemic model,
which is a variant of the networked stochastic model (7). An individual i in the populationN
susceptible (Xi (t) = 0) or infected and infectious (Xi (t) = 1) at any given time t = 1, 2, . . ..
A global detailed description of the population is denoted by X̄(t) = (X1(t), . . . , XN (t))T .

The transition kernel
 can be specified by pi01(t) and pi10(t) for i ∈ N and t = 1, 2, 3, . . ..
pi01(t) is the probability that individual i is susceptible at time t , but gets infected at time
t + 1 and

pi01(t):=P(Xi (t + 1) = 1|Xi (t) = 0) = 1 −
∏

j∈Ni

(1 − βai (t)a j (t)X j (t)), (18)

where β ∈ (0, 1) is the infection rate, 0 ≤ ai ≤ 0 is the action of individual i , and the action
of its neighboring individual j is 0 ≤ a j ≤ 1 for j ∈ Ni .

How protective and preemptive measures are modeled Each term 1−βai (t)a j (t)X j (t) is
the probability that the individual i is not infectedbyneighbor j . If either individual i or his/her
neighbor j takes protective and preemptive measures such as wearing masks, practice social
distancing, or other measures, the probability that individual i is infected by neighbor j will
decrease. An extreme case is either ai = 0 or a j = 0 under which individual i will never be
infected by his/her neighbor j . The product of all the terms

∏
j∈Ni

(1−βai (t)a j (t)X j (t)) is

the probability that the individual is not infected by any interactions. pi10(t) is the probability
that individual i is infected at time t but recovered at time t + 1. This probability is equal to
the inherent recovery rate of the disease δ ∈ (0, 1), i.e.,

pi10(t):=P(Xi (t + 1) = 0|Xi (t) = 1) = δ. (19)

Thepayoff function Individualsmake their decisions basedon the trade-off between the risk
of contracting the virus and the costs of taking protective and preemptive measures. Different
from other studies in which individuals are completely selfish [2,16,18,21,23,27,50,55,56,
59,67,78,84,114,115,145], Eksin et al. considered a sense of altruism among individuals.
Individuals are concerned not only about getting infected themselves but also about infecting
others in their neighborhood.An individual’s payoff at time t is aweighted linear combination
of these considerations:

gi (ai , aNi , XNi (t))

= aiβ

⎡

⎣c0 − c1(1 − Xi (t))
∑

j∈Ni

a j X j (t) + c2Xi (t)
∑

j∈Ni

a j (1 − X j (t))

⎤

⎦ ,
(20)

where c0, c1.c2 are fixed weights. The first term inside the square bracket is the payoffs of
not taking anymeasures including socialization benefits, convenience benefits, and economic
benefits. The second term captures the risk aversion of susceptible individuals. The risk comes
from contacting with infectious neighbors who fail to take serious measures to protect others.
The third term is the empathy term that quantifies the risk of infecting others. Hence, the
weights c0, c1, and c2 are referred to as socialization, risk aversion, and empathy constants.

The payoff function gi is a bilinear function of ai and a j for j ∈ N j . That means given the
actions of individual i’s neighbors aN j and their health status XN j (t), to maximize his/her
payoff, he/she needs to decide whether to resumes normal activity (ai = 1) or self-isolates
(ai = 0) depending on the sign of expression inside the square bracket. If the expression is
positive, individual i prefers to resume normal. Otherwise, self-isolation is the best choice.
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The payoffs of the neighbors of individual i depend on the actions of their own neighbors.
This means if the underlying network G is connected, the payoff profile of the population
couples the actions of all individuals. Hence, individuals need to reason about the interaction
levels of their neighbors in their decision-making. Such individual reasoning can be modeled
using game theory.

3.4.2 Analysis

Obtaining an analytical solution such as the Nash equilibrium is difficult if one considers
accumulative payoffs over a finite period of time or an infinite horizon. Here, Eksin et al.
have considered a solution concept called the myopic Markov perfect equilibrium (MMPE).

Definition 2 The strategy of individual i at time t , denoted by σi , is a mapping from the
state X̄(t) to the action space [0, 1], i.e., a∗

i (t) = σi (X̄(t)). A strategy profile σ :={σi }i∈N is
called an MMPE strategy profile if

gi (a
∗
i , a

∗
Ni

, XNi (t)) ≥ gi (ai , a
∗
Ni

, XNi (t)),

holds for any ai ∈ [0, 1] and for all t = 1, 2, . . ., i ∈ N under the Markov process described
by (18) and (19).

The use of MMPE profile carries two implied assumptions. One is the assumption that
individuals’ actions depend only on the payoff relevant state of the disease. Whether the
class of Markovian strategies contains the Nash strategy for all possible strategies is not
discussed in [31]. Another is the assumption that individuals make decisions considering the
current instantaneous payoff only. Under the assumption of myopic strategies, individuals
do not foresee their future risks of infection or infecting others in their decision-making.

The computation of the MMPE strategy profile involves only one stage of the payoff.
So, it is more tractable than computing the Nash strategies that consider the accumulative
payoffs with states evolving from time to time. Indeed, Eksin et al. show that there exists at
least one such strategy profile for the bilinear game captured by (20). The proof of existence
is constructive, which also provides an algorithm that computes an MMPE strategy profile
in finite time (Readers who are interested in the proof can refer to [31]). But unfortunately,
even for such a simplified solution concept, no closed-form results in terms of expressing the
MMPE action a∗

i as a function of the current state X̄(t) is obtained. In the next subsection,
we present several highlighted results obtained from simulations by the authors.

3.4.3 Highlighted Results

A little empathy plays a huge role in bounding the basic reproduction number An important
measure for an epidemic process is the basic reproduction number R0, which measures the
spread of an infectious disease from an initial sick individual in an otherwise susceptible
host population. Whether R0 > 1 or not is an indicator that the disease is likely to persist
when there is a relatively low number of infected individuals. Hence, R0 is an important
measure relating the likelihood of disease persistence to network and utility weights. When
individuals act according to an MMPE strategy profile, the following bound holds for R0,

R0 ≤ β

δ

K∑

k=1

kP(k),
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where P(k) is the proportion of individuals who have degree k in the network, and
K :=min{�c1/c2�, n}. Here, n is the largest degree an individual has in the network. When
there are no protective and preemptive measures taken, the bound for the network is
R0 ≤ β

δ

∑n
k=1 kP(k). If the empathy constant is close to zero such that c2 is smaller than 1

n c0,
one recovers the bound for the contact networkmodels with no protective or preemptive mea-
sures. When individuals weigh the risk of infecting others and the costs of taking measures
equally, i.e., c0 = c2, the basic reproduction number R0 is well bounded, i.e., R0 ≤ β

δ
P(1).

In a scale-free network with degree distribution P(k) ∼ k−2, the bound becomes

R0 ≤ β

δ

1

2
(n + 1). (21)

If the empathy weight c2 is negligible (c2 < c0/n), meaning individuals do not care about
infecting others, then the bound increases logarithmically with the size of the population,
i.e., R0 ≤ β

δ
1
2 (n + 1). Indeed, the bound is the exact reproduction number for the contact

network SIS model with no individual behavior response to disease prevalence [96, Ch. 17].
The effect of individual response on R0 appears as the empathy weight c2 increases. To
guarantee R0 < 1, the central authority needs to promote altruism among individuals to
guarantee

c2 >
c0

exp(2δ/β) − 1
. (22)

To show the accuracy of the critical c2 given by (22), Eksin et al. compared the R0 bound
given by (21) to simulated R0 value in [31, Figure 4].

Risk aversion alone cannot eradicate the disease but it can affect the infection levelWhile
the risk aversion weight c1 does not appear in any of the bounds for R0, c1 cab affect the
infection level of the population under the MMPE strategy even though it is not shown how
c1 affects the infection level. The authors show that when the empathy weight c2 is zero, the
outbreak threshold condition stays the same, i.e., βλmax(A)/δ > 1 for any c1 ∈ [0, 1]. This
indicates that risk aversion alone cannot help eradicate the disease without the empathy of
infectious individuals in this game.

3.4.4 Discussions

The game framework formulated here by Eksin et al. is similar to the fine-grained framework
introduced in Sect. 3.2. Eksin et al. made two simplifications to ensure the analysis and the
numerical computation are feasible. One is the use of MMPE as a solution concept to avoid
resorting to dynamic programming techniques to solve the problem, which also facilitates
the process of showing the existence of the equilibrium. Another one is the assumption that
every individual knows the complete state information X̄(t) at every stage t .

Compared with [114] by T. Reluga, there are two differences in terms of the epidemic
models. First, Eksin et al. utilize a networked model while T. Reluga chooses a shapeless
epidemic model. Second, Eksin et al. select a stochastic model while T. Regula leverages a
deterministic model. The networked epidemic model describes the health status at an indi-
vidual level. This framework allows modeling the local interactions: protecting oneself and
one’s neighbors. However, the networked epidemic models limit the number of individuals
in the population N to a finite number. As N increases, even the computation of a simplified
equilibrium concept such as the MMPE becomes intractable.

Eksin et al. have focused on investigating the effects of individual measures on disease
eradication through the lens of the basic reproduction number R0. Hence, the results here
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shed very little light on the effects of empathy and risk aversion on longer-term epidemic
processes when the disease becomes endemic. Investing such individual measures in long-
term spreading processes can be a future research direction. The authors do analyze the price
of anarchy (PoA) under the MMPE and it is shown that the price of anarchy is bounded as

1 ≥ PoA ≥ 1 − maxi∈N |Ni |max{c1, c2}
nc0

.

This upper bound can be arbitrarily bad, i.e., in the order of 1/n. That means without enforced
measures from the central authority, an individual’s response can be inefficient in terms of
maximizing the social benefit. Hence, it is essential to couple the decentralized individual
responses to disease prevalencewith centralized policies such as public announcements,mass
organized isolation, or vaccination campaigns arranged by the central authorities.

3.5 IndividualWeight Adaptation: An N-Player Differential Game [66]

In [66], Huang et al. proposed an N -player differential game framework based on the N -
intertwined deterministic epidemic model (5). The author mainly focuses on mitigating virus
spreading on computer networks. But the modeling, the analysis, and the results of [66] can
shed light on the epidemic spreading in the human population. In the differential game, each
individual aims to strike a balance between being infected and loss of benefit (economic or
social) by reducing his/her connection to neighbors. With a deterministic epidemic model,
using Pontryagin’s maximum principle, the authors are able to obtain structural results that
help understand human behavior under an epidemic. The N -intertwined epidemic model is
networked, allowing the authors to capture the local interactions among individuals and their
neighbors. The authors also propose a penalty scheme, on behalf of the central authority, to
achieve social welfare for the population.

3.5.1 Modeling

Modeling interventions through a weighted network with time-varying weights A directed
weighted network is a network where the directed connections among individuals have
weights assigned to them. The weights between two individuals capture the intensity of the
connectivity and the directions indicate the direction in which the disease or virus can spread.
The weight between individual i and individual j at time t is denoted by wi j (t) ∈ [0, 1].
In a directed network, wi j (t) is not necessarily equal to w j i (t) for any t . Individual i can
reduce his/her risk of contracting the virus by cutting downwi j , j ∈ N j , i.e., its connectivity
with his/her neighbors. In a computer network, this can be done by reducing file transmission
from one server to another or downloading fewer packages from some servers.

The epidemicmodelHuang et al. adopted the N -intertwined SIS epidemicmodel, in which
the probability of individual i being infected at time t is denoted by pi (t). The evolution of
pi is coupled with the states of other individuals in the network:

ṗi = [1 − pi (t)]β
∑

j∈N out
i

wi j (t)p j (t) − δ pi (t), i = 1, 2, . . . , N , (23)

whereN out
i denotes the set of neighbors individual i reaches out for. If p j (t) is high, individual

i can reach out less to individual j to avoid being infected, i.e., reducingwi j (t), and restoring
its connection to individual j after p j (t) decreases. The epidemic model (23) is a variant
of the N -intertwined deterministic model (4) we have introduced in Sect. 2.1.2 with two
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differences. One is that here, Huang et al. used weights that can be adaptive to describe the
network instead of fixed adjacency matrix elements. Another one is that the transmission is
now directional. Individual i being able to infect individual j does not mean individual j
can be infected by individual j . Such cases appear more in computer networks. In human
population, the transmission is often times mutual. Hence, it is more reasonable to use an
undirected network to model connections in human population.

The cost function The authors consider completely selfish individuals associating with
two costs. One cost arises from infection captured by fi : [0, 1] → R

+. Another cost is from
inefficiency or performance degradation induced by deviating from the original connections
ai j for i, j ∈ N , which is captured by a convex function gi j : R → R

+. Individual i
optimizes over a finite horizon [0, T ] with respect to its cost Ji :

Ji (pi , pN out
i

, {wi j } j∈N out
i

) =
∫ T

0
fi (pi (t)) +

∑

j∈N out
i

gi j (wi j (t) − ai j )dt, (24)

where ai j is the original elements in the adjacency matrix. The original weights ai j , i, j ∈ N
describe the connectivity before the epidemic hits. The original weights ai j , i, j ∈ N are
assumed to be optimal for each individualmeaning everyone keeps the bestway of connecting
to others for themselves. Any deviation from the original weights at time t will induce
inefficiency or performance degradation quantified by

∑
j∈N out

i
gi j (wi j (t) − ai j ). The first

term inside the integral of (24) represents individual i’s cost of infection. Different from the
work by Eksin et al. [31], the individuals here are completely selfish who only care about
their own infection and inefficiency or performance degradation. However, the goal of the
central authority is to minimize the aggregated social cost

Jc =
∫ T

0

∑

i∈N
fi (pi (t)) +

∑

i∈N

∑

j∈N out
i

gi j (wi j (t) − ai j )dt . (25)

The terminal time T is the time when the mass installation of an anti-virus or anti-malware
patch is implemented.

3.5.2 Analysis

The authors apply Pontryagin’s minimum principle to obtain a Nash equilibrium for the
N -person differential game defined by (23) and (24). Under the Nash equilibrium strategy,
individuals adapt their weights according to the following rule.

Theorem 2 The Nash equilibrium strategy profile {w∗
i j }i∈N , j∈Ni for the N-person differen-

tial game defined by (23) and (24) are adapted according to

w∗
i j (t) =

⎧
⎪⎨

⎪⎩

0, −φi j ≤ g′
i j (−ai j ),

(g′
i j )(−φi j (t)), g′

i j (−ai j ) < −φi j (t) < g′
i j (0),

ai j , −φi j (t) ≥ g′
i j (0),

(26)

for i ∈ N , j ∈ N out
i , where φi j (t):=xii (t)(1 − p∗

i (t))β j p∗
j (t). Here, xii (·) is the i-th

component of the costate function xi (·) whose dynamics are governed by

xi (t) = i (t, {pi (t)}i∈N , {w∗
i j (t)}i∈N , j∈Ni )xi (t) + λi , i ∈ N ,
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where λi = −d fi/dpi and  is a matrix defined as

i,mn =

⎧
⎪⎨

⎪⎩

∑
j∈N out

m
w∗
mjβ j p∗

j + δm, if n = m,

−(1 − p∗
n(t))w

∗
nm(t)βm, if n ∈ N in

m ,

0, otherwise.

One can observe from (26) that the weight adaptationw∗
i j under Nash equilibrium depends

on φi j (t):=xii (t)(1− p∗
i (t))β j p∗

j (t). That means the weight adaptationw∗
i j is decided by the

costate component xii , which carries the information about the whole population, individual
i’s health status pi , and his/her neighbor’s health status. To see the dependence more clearly,
one can assume that gi j is quadratic, i.e., gi j (x) = 1

2 x
2. Then,

w∗
i j (t) =

⎧
⎪⎨

⎪⎩

0, φi j ≥ ai j ,

−φi j (t), ai j > φi j (t) > 0,

ai j , φi j (t) ≤ 0.

(27)

One can draw several intuitive conclusions immediately from (26) and (27). The first is
that individual i reaches out less to his/her neighbor j if the neighbor is infected with high
probability, i.e., w∗

i j decreases when p∗
j (t) increases. The second is that individuals tend to

reach out less to neighbors who can get infected easily, i.e., a high β j leads to a lower w∗
i j .

The weight adaptation w∗
i j (t) is continuous over time if gi j is convex. If gi j is concave,

individuals would implement a bang-bang type of control:

w∗
i j (t) =

⎧
⎨

⎩

0, φi j (t) ≥ gi j (−ai j )
ai j

,

ai j , φi j (t) >
gi j (−ai j )

ai j
.

Different from the goals of individuals, the central authority aims to minimize social
costs Jc = ∑

i∈N Ji . Huang et al. show that if the central authority applies a penalty
ci (t) = ∑

j∈Ri
f j (x j ) to individual i at each time t , the central authority can achieve

social optimum without enforcing weight adaptation rules for every individual. Here, Ri is
the set of individuals that can be reached by individual i .

3.5.3 Results

Not just current health status matters, inherent vulnerability also matters From (26) and
(27), we know that individuals cut down their connections with individuals who are currently
infected. Beyond that, individuals also lower more weight of connections with individuals
who are inherently more vulnerable to the virus even though they may not be infected cur-
rently. For example, in computer network, one may reduce data transfer from a server whose
security level is very low.

The ‘what-the-heck’ mentality The ‘what-the-heck’ mentality is one that when something
undesired happens, one gives up making effort to fix it. Similar mentality also appears in
results of (26) and (27). The term (1 − pi (t)) in φi j suggests that if individual i is infected,
he/she just restores all his/her connections with his/her neighbors. Since the network studied
here byHuang et al. is directed, infected individuals restoring their connections will not cause
more infection. It is worth investigating whether this result still holds or not in undirected
networks. If it holds, this uncaring behavior may lead to a higher infection level in the
population.
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Fig. 6 [66] The dynamics of thewhole network’s infection under the differential game-basedweight adaptation
scheme, the optimal control-based weight adaption scheme, and the scheme without weight adaptation when
fi (pi (t)) = α pi (t)

The weight reduction lasts till the last minute The authors show that for all i ∈ N ,
xii (t) ≥ 0 for all t ∈ [0, T ] with xii (t) = 0 if and only t = T . It is also shown that for every
i ∈ N , pi > 0 for all t ∈ [0, T ]. That means every individual would more or less cut down
his/her connections with neighbors during the spreading process and only restore his/her
connections when mass installation of security patches or mass vaccination is available, i.e.,
w∗
i j (t) < ai j for t ∈ [0, T ) and w∗

i j (T ) = ai j .
Equilibrium weight adaption outperforms social optimal weight adaptation in terms of

lowering infection level of the whole network Using numerical examples, Huang et al. show
in Fig. 6 that even though the game-based scheme is inefficient in terms of minimizing the
total cost Jc, it outperforms the optimal control-based scheme as we can observe that the
infection level under the game-based scheme is always lower than the infection level under
the optimal control based scheme. Nomatter what value α is, the equilibriumweight adaption
scheme tends tomitigate the spreading of the virus better than the schemewithout adaptation.

3.5.4 Discussions

The game framework formulated here by Huang et al. is, similar to the framework proposed
by Eksin et al. in [31], built on a networked epidemic model. This framework allows the
authors to capture the local interaction and the individual-level virus spreading. The authors
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here choose the deterministic epidemic models allowing them to obtain analytical results in
terms of the Nash equilibrium of a finite horizon problem, while in [31], only the solution
for the myopic Markovian Nash equilibrium can be computed numerically. However, since
the N -intertwined deterministic epidemic model is an approximation of the stochastic model
and the accuracy of the approximation is only guaranteed under certain conditions [134], it is
not clear whether the game-theoretic model built upon the approximated spreading process
provides an accurate approximation of human behavior. In general, the analysis of whether
the equilibrium obtained under the approximated spreading process stays close to the equi-
librium obtained under the stochastic process requires significant technical leaps, and it is a
topic of active research.

The Nash equilibrium obtained by the authors is an open-loop solution. It is pointed out
by [73] that this solution is appropriate in the context of the security in networks, as the
instantaneous state of each individual is impossible (or very costly) to follow. But it is still
worth studying whether the closed-loop Nash equilibrium and the open-loop one produce
the same value of the game and whether the open-loop strategy can be implemented in a
feedback way in future endeavors. Another direction of research for this type of framework
is to study the long-term behavior of individuals, i.e., the case when T is large or infinite.

4 Game Theory on theMove and Potential Directions

In the previous section, we presented an overview of the current state of the art involving the
game-theoretic models to study human behavior amid epidemics. Game theory has caught
many eyes of people who experiences the COVID-19 pandemic and influenced policies both
directly and indirectly. Since the prevalence of the COVID-19 pandemic, game theory has
been on themove from academia tomedia and the government. TheNewYork Times, a news-
paper that can reach tens of millions readers worldwide, has published an article about how
game theory can explain thewaveswe observed from theCOVID-19 infection data, howgame
theory can help prioritize vaccines, and how game theory incorporated with COVID data can
help make predictions [128]. The Forbes Magazine has featured an article about how a game
theory-based model can enhance stock management of PPE (Personal Protective Equipment)
supply in the hospitals of the EnglishNationalHealth Service (NHS) [135]. The FortuneMag-
azine has featured a commentary on howgame theory can solve the vaccine rollout puzzle [91]
and help state authorities tominimize the cumulative distance traveled and congestion at facil-
ities, ormaximize efficient and equitable access to vaccines. The game theory-based approach
for vaccine rollout planning has been proven valuable in after-the-fact analyses of the H1N1
vaccination campaign in 2009 [124] and the response toHaiti’s cholera epidemic in 2010 [92].

Apart from media coverage, stakeholders such as the government and the US army are
actively looking for expert advice fromgame-theoretic perspectives. TheOntario government
in Canada has funded Chris Bauch’s research project that studies how to re-open Ontario’s
economy without causing a resurgence by leveraging game theory-based models [44]. The
Ontario government is leveraging the research results to prevent, detect and treat COVID-
19. Amid the COVID-19 pandemic, the US Department of Defense (DoD) has awarded the
University of Michigan in Ann Arbor $6.5 million to study how officials at different levels
of government can work together to maximize COVID-19 safe behavior [89]. Beyond that,
research results regarding the blood shortages during the COVID-19 pandemic has reached to
the Admiral Brett Giroir of the US Department of Healthy & Human Services in a letter sent
fromCaliforniaAttorneyGeneralXavierBecerra and signed byAttorneyGenerals of 21 other
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states [69]. The letter cited and demonstrated the research results inwhichDr. AnnaNagurney
has investigated the supply chain network competition among blood service organizations
using a generalized Nash equilibrium framework and how it causes the blood shortages
during the COVID-19 pandemic [93]. The idea of game theory also influences contact tracing
application developers. Inspired by game theory and behavioral science, app developers
develop an app called NOVID which uses an approach called “inverts the incentives”. The
app warns people ahead of time that danger was near instead of telling people they’d been
exposed and, for other people’s good, quarantining themselves to stop further spread [121].

Despite of the current impact that the game theory-based model made, there are still many
hollows and research gaps in the results presented that need to be well taken care of. This
section spotlights several of the main research challenges, to what extent they are currently
being tackled, and what needs to be done.

4.1 The Justification of Game-Theoretic Methods for Deterministic Models

Many game-theoretic frameworks have adopted continuous deterministic epidemic models
since these models are easy to analyze and more likely to produce meaningful analytical
results. Continuous-time deterministic models are approximations of the epidemic spreading
processes in the form of ODEs. The justification of passing from the original stochastic
models to a continuous deterministic model in the presence of strategic interventions is
barely mentioned in most papers. For example, it is an open problem of how the weight
adaptation policies found for the N -intertwined deterministic model (23) in Sect. 3.5 relate
to the policies found for its stochastic counterpart (7), and how the social distancing policies
found in Sect. 3.3 relate to the policies we would find for the stochastic model (6).

Gast et al. have proposed a mean-field Markov decision process framework, which pro-
vides a rigorous justification of the use of a continuous optimal control approach for the virus
spreading problem, and shows that the continuous limits provide insights on the structure of
the optimal behavior for the discrete stochastic epidemic model [41]. The work by Gast et
al. has focused on centralized problems (i.e., optimal control problems). Tembine et al. have
investigated the asymptotic behavior of a Markov decision evolutionary games as the size of
the population grows to infinity [126]. It is an open research question whether these mean-
field results would hold for other epidemic models when game-theoretic decision making is
involved.

4.2 The Role of the Central Authority: Mechanism Design and Information Design

Due to the necessity of decentralized decision-making for controlling epidemics, more
researchers have started to pay attention to game-theoretic decentralized solutions. How-
ever, most studies of this kind focused on the interactions among individuals [2,16,18,21,
23,24,27,30,31,50,55,56,59,66,67,78,82,84,114,115,120,129,130,145]. Some studies inves-
tigated the inefficiency of selfish decision-making demonstrated by the price of anarchy.
Among these studies, some has not considered the role of the central authority [115,129].
Indeed, the central authority plays a significant role in controlling the epidemic spreading
even when the interventions are not enforceable among individuals. When individuals make
their own decisions to maximize their payoffs, it is important to consider mechanism design
[38] and/or information design [147] to create incentives for individuals and to achieve a
certain degree of social optimum.
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A handful of papers have studied the role of the central authority in an epidemic when
individuals only care for their own payoffs [13,107]. Aurell et al. [13] proposed a Stackelberg
game framework in which individuals play a non-cooperative game, and the central authority
influences the nature of the resulting Nash equilibrium through incentives so as to optimize
its own objective. In [107], the authors promote a mechanism design approach, on behalf
of the central authority, weighing response costs vs. the social good. Some researchers have
studied how information can affect human behavior amid an epidemic [78,138]. So far, how
should central authority disseminate information to help individuals fight against the virus
remains an open problem.

4.3 InformationMatters

Most papers assume complete information in their game-theoretic frameworks [30,31,65,
66,114,115]. The assumption of complete information in the context of an epidemic study
is that every individual knows, when they make decisions, the health status of every other
individual in the network, which is unrealistic and impractical. Hence, dynamic games with
partial information or incomplete information need to be applied to studying human behavior
amid an epidemic. However, papers following this direction of research are rare.

Obtaining information canbe costly. For example, if an individual needs tofindoutwhether
he or she is infected or not, he/she has to pay for a testing kit or spend time commuting to a test-
ing spot. If the central authority wants to find out the infection level of the whole population,
it needs to deploy a large number of resources to conduct mass testing or mass survey. When
to obtain information and how frequently information needs to be updated are interesting
questions that the decision-makers need to address. In [127], the authors revealed a counterin-
tuitive fact that the equilibrium level of infection increases as the users’ learning rate increases.
That means the more frequently the information exchanges, the higher the infection level
at the equilibrium. In [64], the authors consider costly information in a continuous Markov
decision process, and the authors show it is not necessary to obtain information very often to
maintain satisfactory performance. Understanding the right timing to conduct mass testing
to help all decision-makers combat the diseases is essential, especially for those long-lasting
low-infection-level diseases. However, this problem has not been touched in the literature yet.

4.4 Human are Not Completely Rational

As with all game-theoretic models, human behavior is unlikely to completely agree with the
equilibria due to the lack of information or solid prior beliefs. Nevertheless, very few papers
have studied the effect of bounded rationality of individuals. Recent studies have included
irrationality in evolutionary gameswhen individuals are not entirely rational [109]. Advanced
solution concepts such as the ‘Quantal Response Equilibrium’ have been studied to account
for bounded rationality of individuals [42]. In [59], Hota et al. pointed out that humans often
perceive probabilities differently from their true values, and they modeled the misperception
of the infection risk among individuals. However, to understand the bounded rationality of
human behavior, more studies need to be carried out in the future.

5 Conclusion

This article has provided a tutorial combined with a review about the integration of decision
models into epidemic models. We focus on how game-theoretic models are coupled with
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epidemic models to understand the human-in-the-loop epidemic spreading process. Aiming
to facilitate readers from the game theory community and the dynamic game community,
this review focuses more on introducing the popular epidemic models, the pros and cons of
different epidemic models, and how interventions can be modeled in the epidemic models
rather than the basics of game theory. We provide a taxonomy of game-theoretic framework
for human-in-the-loop epidemicmodeling. From the taxonomy, game theorists from different
branches can identify topics that are related to them the most. Although this review focuses
on disease and epidemics in the human population, similar mathematical formulations, tools,
and results can extend directly to many different spreading processes including malware
spreading, information dissemination, etc.

In this review, we strive to provide a comprehensive view of the literature. Game-theoretic
modeling for epidemics is an emerging topic. There are many useful and important game-
theoretic frameworks in the literature that have not been included. We encourage interested
readers to keep track of the current state of the art. Despite the vast amount of papers studying
the game-theoretic modeling for epidemics, there are still many open questions and gaps
waiting to be addressed and filled, especially the ones we introduced in Sect. 4. We believe
game theorists and dynamic game theorists can play a significant role, address these questions,
and fill the void in theory and practice. Epidemics have taken and are taking a devastating toll
on human society. The game-theoretic framework for understanding the human-in-the-loop
epidemic spreading will make a real societal impact.

Acknowledgements This work is partially supported by Grants SES-1541164, ECCS-1847056, CNS-
2027884, and BCS-2122060 from National Science Foundation (NSF), DOE-NE Grant 20-19829, and Grant
W911NF-19-1-0041 from Army Research Office (ARO).

References

1. Abouelkheir I, El Kihal F, Rachik M, Elmouki I (2019) Optimal impulse vaccination approach for an
sir control model with short-term immunity. Mathematics 7(5):420

2. Adiga A, Venkat S, Vullikanti A (2016) To delay or not: temporal vaccination games on networks. In:
IEEE INFOCOM 2016—the 35th annual IEEE international conference on computer communications.
IEEE, pp 1–9

3. Akhil P, Altman E, Sundaresan R, LINCS P (2019) A mean-field approach for controlling singularly
perturbed multi-population sis epidemics. arXiv preprint arXiv:1902.05713

4. AliA,AltmanE,ChahedT, FiemsD,PandaM,Sassatelli L (2012)Estimatingfile-spread in delay tolerant
networks under two-hop routing. In: International conference on research in networking. Springer, pp
277–290

5. Allen E (2007) Modeling with Itô stochastic differential equations, vol 22. Springer, Berlin
6. Allen LJ (2008) An introduction to stochastic epidemic models. In: Brauer F, van den Driessche P, Wu

J (eds) Mathematical epidemiology. Springer, Berlin, pp 81–130
7. Altman E (2012) An epidemic game between contents in a wireless network. In: 2012 international

symposium on wireless communication systems (ISWCS). IEEE, pp 1088–1091
8. Altman E (2013) A stochastic game approach for competition over popularity in social networks. Dyn

Games Appl 3(2):313–323
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141. Xu Z, Khanafer A, Başar T (2015) Competition over epidemic networks: Nash and Stackelberg games.
In: 2015 American control conference (ACC). IEEE, pp 2063–2068

142. XueD, Hirche S (2018) Distributed topologymanipulation to control epidemic spreading over networks.
IEEE Trans Signal Process 67(5):1163–1174

143. YaesoubiR,CohenT (2011)GeneralizedMarkovmodels of infectious disease spread: a novel framework
for developing dynamic health policies. Eur J Oper Res 215(3):679–687

144. YangW (2021)Modeling COVID-19 pandemic with hierarchical quarantine and time delay. DynGames
Appl 1–23

145. Zhang HF, Yang Z, Wu ZX, Wang BH, Zhou T (2013) Braess’s paradox in epidemic game: better
condition results in less payoff. Sci Rep 3(1):1–8

146. Zhang L, Xu J (2019) Differential security game in heterogeneous device-to-device offloading network
under epidemic risks. IEEE Trans Netw Sci Eng 7(3):1852–1861

147. Zhang T, Zhu Q (2021) Informational design of dynamic multi-agent system. arXiv preprint
arXiv:2105.03052

148. ZhaoD,WangL,WangZ,XiaoG (2018)Virus propagation and patch distribution inmultiplex networks:
modeling, analysis, and optimal allocation. IEEE Trans Inf Forensics Secur 14(7):1755–1767

149. Zhu L, Zhou X, Li Y, Zhu Y (2019) Stability and bifurcation analysis on a delayed epidemic model with
information-dependent vaccination. Phys Scr 94(12):125202

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://www.nytimes.com/2020/12/20/health/virus-vaccine-game-theory.html?smid=url-share
https://www.nytimes.com/2020/12/20/health/virus-vaccine-game-theory.html?smid=url-share
https://www.forbes.com/sites/anuradhavaranasi/2021/01/31/covid-19-could-game-theory-help-in-tackling-ppe-shortages-among-health-care-workers/?sh=36a76c8594db
https://www.forbes.com/sites/anuradhavaranasi/2021/01/31/covid-19-could-game-theory-help-in-tackling-ppe-shortages-among-health-care-workers/?sh=36a76c8594db
http://arxiv.org/abs/2105.03052

	Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review
	Abstract
	1 Introduction
	1.1 Mathematical Preliminaries

	2 Epidemic Models and Decision Models
	2.1 Epidemic Models
	2.1.1 Stochastic Versus Deterministic Models
	2.1.2 Deterministic Models
	2.1.3 Stochastic Models

	2.2 Decision Models
	2.2.1 What Interventions to Take?
	2.2.2 How are Interventions Modeled?
	2.2.3 When are Interventions Taken?
	2.2.4 Who are the Decision-Makers?
	2.2.5 Information Matters


	3 Game-Theoretic Decision-Making in Epidemics
	3.1 A Multi-dimensional Taxonomy of Game-Theoretic Models in Epidemics
	3.2 A Fine-Grained Dynamic Game Framework for Human-in-the-Loop Epidemic Modeling
	3.3 Social Distancing Game with Homogeneous SIR Epidemic Model reluga2010game
	3.3.1 Modeling
	3.3.2 Analysis
	3.3.3 Highlighted Results
	3.3.4 Discussions

	3.4 The Power of Empathy: A Markov Game Under the Myopic Equilibrium eksin2017disease
	3.4.1 Modeling
	3.4.2 Analysis
	3.4.3 Highlighted Results
	3.4.4 Discussions

	3.5 Individual Weight Adaptation: An N-Player Differential Game huang2020differential
	3.5.1 Modeling
	3.5.2 Analysis
	3.5.3 Results
	3.5.4 Discussions


	4 Game Theory on the Move and Potential Directions
	4.1 The Justification of Game-Theoretic Methods for Deterministic Models
	4.2 The Role of the Central Authority: Mechanism Design and Information Design
	4.3 Information Matters
	4.4 Human are Not Completely Rational

	5 Conclusion
	Acknowledgements
	References




