Skip to main content

Advertisement

Log in

Herd Behaviors in Epidemics: A Dynamics-Coupled Evolutionary Games Approach

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The recent COVID-19 pandemic has led to an increasing interest in the modeling and analysis of infectious diseases. The pandemic has made a significant impact on the way we behave and interact in our daily life. The past year has witnessed a strong interplay between human behaviors and epidemic spreading. In this paper, we propose an evolutionary game-theoretic framework to study the coupled evolution of herd behaviors and epidemics. Our framework extends the classical degree-based mean-field epidemic model over complex networks by coupling it with the evolutionary game dynamics. The statistically equivalent individuals in a population choose their social activity intensities based on the fitness or the payoffs that depend on the state of the epidemics. Meanwhile, the spreading of the infectious disease over the complex network is reciprocally influenced by the players’ social activities. We analyze the coupled dynamics by studying the stationary properties of the epidemic for a given herd behavior and the structural properties of the game for a given epidemic process. The decisions of the herd turn out to be strategic substitutes. We formulate an equivalent finite-player game and an equivalent network to represent the interactions among the finite populations. We develop a structure-preserving approximation technique to study time-dependent properties of the joint evolution of the behavioral and epidemic dynamics. The resemblance between the simulated coupled dynamics and the real COVID-19 statistics in the numerical experiments indicates the predictive power of our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banerjee AV (1992) A simple model of herd behavior. Q J Econ 107(3):797–817. https://doi.org/10.2307/2118364

    Article  Google Scholar 

  2. Başar T, Olsder GJ (1998) Dynamic noncooperative game theory. SIAM, New Delhi

    Book  Google Scholar 

  3. Bauch CT, Earn DJ (2004) Vaccination and the theory of games. Proc Natl Acad Sci 101(36):13391–13394. https://doi.org/10.1073/pnas.0403823101

    Article  MathSciNet  MATH  Google Scholar 

  4. Brauer F (1963) Bounds for solutions of ordinary differential equations. Proc Am Math Soc 14(1):36–43

    Article  MathSciNet  Google Scholar 

  5. Brauer F (2008) Compartmental models in epidemiology. In: Mathematical epidemiology. Springer, pp 19–79. https://doi.org/10.1007/978-3-540-78911-6_2

  6. Brunetti I, Hayel Y, Altman E (2018) State-policy dynamics in evolutionary games. Dyn Games Appl 8(1):93–116

    Article  MathSciNet  Google Scholar 

  7. Cardaliaguet P (2010) Notes on mean field games. Technical report

  8. Chen J, Huang Y, Zhang R, Zhu Q (2020) Optimal quarantining strategy for interdependent epidemics spreading over complex networks. arXiv:2011.14262

  9. Como G, Fagnani F, Zino L (2020) Imitation dynamics in population games on community networks. IEEE Trans Control Netw Syst 8(1):65–76

    Article  MathSciNet  Google Scholar 

  10. Dianetti J, Ferrari G, Fischer M, Nendel M (2019) Submodular mean field games: existence and approximation of solutions. arXiv:1907.10968

  11. Dorogovtsev SN, Goltsev AV, Mendes JF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275–1335. https://doi.org/10.1103/RevModPhys.80.1275

    Article  Google Scholar 

  12. Fu F, Rosenbloom DI, Wang L, Nowak MA (2011) Imitation dynamics of vaccination behaviour on social networks. Proc R Soc B Biol Sci 278(1702):42–49

    Article  Google Scholar 

  13. Galeotti A, Goyal S (2010) The law of the few. Am Econ Rev 100(4):1468–92. https://doi.org/10.1257/aer.100.4.1468

    Article  Google Scholar 

  14. Gosak M, Kraemer MU, Nax HH, Perc M, Pradelski BS (2021) Endogenous social distancing and its underappreciated impact on the epidemic curve. Sci Rep 11(1):1–10. https://doi.org/10.1038/s41598-021-82770-8

    Article  Google Scholar 

  15. Grammatico S (2017) Dynamic control of agents playing aggregative games with coupling constraints. IEEE Trans Autom Control 62(9):4537–4548

    Article  MathSciNet  Google Scholar 

  16. Gubar E, Zhu Q, Taynitskiy V (2017) Optimal control of multi-strain epidemic processes in complex networks. In: International conference on game theory for networks. Springer, pp 108–117

  17. Hayel Y, Zhu Q (2017) Epidemic protection over heterogeneous networks using evolutionary poisson games. IEEE Trans Inf Forensics Secur 12(8):1786–1800

    Article  Google Scholar 

  18. Hofbauer J, Sigmund K et al (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139173179

    Book  MATH  Google Scholar 

  19. Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled lqg problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans Autom Control 52(9):1560–1571

    Article  MathSciNet  Google Scholar 

  20. Jackson MO, Zenou Y (2015) Chapter 3-games on networks. Elsevier, pp 95–163. https://doi.org/10.1016/B978-0-444-53766-9.00003-3

  21. Jiang C, Chen Y, Liu KR (2014) Graphical evolutionary game for information diffusion over social networks. IEEE J Sel Top Signal Process 8(4):524–536

    Article  Google Scholar 

  22. Kabir KA, Tanimoto J (2020) Evolutionary game theory modelling to represent the behavioural dynamics of economic shutdowns and shield immunity in the covid-19 pandemic. Roy Soc Open Sci 7(9):201095. https://doi.org/10.1098/rsos.201095

    Article  Google Scholar 

  23. Lasry JM, Lions PL (2007) Mean field games. Jpn J Math 2(1):229–260

    Article  MathSciNet  Google Scholar 

  24. Martcheva M, Tuncer N, Ngonghala CN (2021) Effects of social-distancing on infectious disease dynamics: an evolutionary game theory and economic perspective. J Biol Dyn 15(1):342–366

    Article  MathSciNet  Google Scholar 

  25. McAdams D, McDade KK, Ogbuoji O, Johnson M, Dixit S, Yamey G (2020) Incentivising wealthy nations to participate in the covid-19 vaccine global access facility (covax): a game theory perspective. BMJ Global Health. https://doi.org/10.1136/bmjgh-2020-003627

    Article  Google Scholar 

  26. Milgrom P, Roberts J (1990) Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58(6):1255–1277

    Article  MathSciNet  Google Scholar 

  27. Newman M (2018) Networks. Oxford University Press, Oxford

    Book  Google Scholar 

  28. Parise F, Gentile B, Grammatico S, Lygeros J (2015) Network aggregative games: distributed convergence to nash equilibria. In: 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 2295–2300

  29. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Mod Phys 87(3):925

    Article  MathSciNet  Google Scholar 

  30. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203. https://doi.org/10.1103/PhysRevLett.86.3200

    Article  Google Scholar 

  31. Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65(3):036104. https://doi.org/10.1103/PhysRevE.65.036104

    Article  Google Scholar 

  32. Piller C (2020) Undermining cdc. Sciences 370(6515):394–399

    Article  Google Scholar 

  33. Ruszczynski A (2011) Nonlinear optimization. Princeton University Press, Princeton

    Book  Google Scholar 

  34. Sandholm WH (2010) Population games and evolutionary dynamics. MIT press, New York

    MATH  Google Scholar 

  35. Scharfstein DS, Stein JC (1990) Herd behavior and investment. Am Econ Rev 465–479

  36. Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18

    Article  Google Scholar 

  37. Stella L, Bauso D, Colaneri P (2021) Mean-field game for collective decision-making in honeybees via switched systems. IEEE Trans Autom Control

  38. Szabó G, Fath G (2007) Evolutionary games on graphs. Phys Rep 446(4):97–216. https://doi.org/10.1016/j.physrep.2007.04.004

    Article  MathSciNet  Google Scholar 

  39. Tembine H (2020) Covid-19: data-driven mean-field-type game perspective. Games. https://doi.org/10.3390/g11040051

    Article  MathSciNet  MATH  Google Scholar 

  40. Tembine H, Altman E, El-Azouzi R, Hayel Y (2009) Evolutionary games in wireless networks. IEEE Trans Syst Man Cybern Part B (Cybern) 40(3):634–646

    Article  Google Scholar 

  41. Tembine H, Le Boudec,JY, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov Decision evolutionary games and teams. In: 2009 international conference on game theory for networks, pp 140–150.IEEE

  42. The New York Times: Tracking coronavirus in New York: Latest map and case count. https://www.nytimes.com/interactive/2021/us/new-york-covid-cases.html

  43. Topkis DM (1979) Equilibrium points in nonzero-sum n-person submodular games. SIAM J Control Optim 17(6):773–787

    Article  MathSciNet  Google Scholar 

  44. Wei J, Wang L, Yang X (2020) Game analysis on the evolution of covid-19 epidemic under the prevention and control measures of the government. PLoS ONE 15(10):1–16. https://doi.org/10.1371/journal.pone.0240961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Modeling and Control of Epidemics” edited by Quanyan Zhu, Elena Gubar and Eitan Altman.

Appendices

Proof of Theorem 1

Proof

Suppose that \(\frac{\lambda p (1-s^p_i)}{\gamma }<1\) for all \(i\in {\mathcal {I}}^p\) and for all \(p\in {\mathcal {P}}\). Since \(1-I^p_i(t)\le 1\), we obtain from (4) that: \(\frac{\mathrm {d}}{\mathrm {d}t} I^p_i(t)\le -\gamma I^p_i(t)+\lambda (1-s^p_i) p\varTheta (t)\). Then, it suffices to discuss the stability of the system

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t} I(t) = \begin{pmatrix} -\gamma I^1_1(t) \\ \vdots \\ -\gamma I^P_{n^P}(t) \end{pmatrix} +\lambda \begin{pmatrix} 1\cdot (1-s^1_1) \\ \vdots \\ P\cdot (1-s^P_{n^P}) \end{pmatrix} \varTheta (t). \end{aligned}$$

Consider the Lyapunov function \(V(t)=\sum _{p\in {\mathcal {P}}} \sum _{i\in {\mathcal {I}}^p} b^p_i I^p_i(t)\), where \(b^p_i=\frac{p x^p_i}{\gamma }\ge 0\). The time derivative of the Lyapunov function is:

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}V(t)= & {} -\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p x^p_i I^p_i(t)+\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p}\frac{p x^p_i\lambda (1-s^p_i) p\varTheta (t)}{\gamma } \\= & {} -\varTheta (t)\sum _{p\in {\mathcal {P}}}p m^p + \varTheta (t)\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p}\frac{p^2 x^p_i\lambda (1-s^p_i)}{\gamma }\\= & {} \varTheta (t)\sum _{p\in {\mathcal {P}}}\left[ -p m^p+\frac{p^2\lambda }{\gamma }\sum _{i\in {\mathcal {I}}^p}x^p_i(1-s^p_i) \right] . \end{aligned}$$

Combining the assumption that \(\frac{\lambda p (1-s^p_i)}{\gamma }<1\) and the condition that \(\sum _{i\in {\mathcal {I}}^p}x^p_i=m^p\), we conclude that \(\frac{\mathrm {d}}{\mathrm {d}t}V(t)<0\) when \(\varTheta (t)\ne 0\). This result shows that the system \(\frac{\mathrm {d}}{\mathrm {d}t}I^p_i(t)= -\gamma I^p_i(t)+\lambda (1-s^p_i) p\varTheta (t)\) converges to 0 as \(t\rightarrow \infty \). Therefore, the system (4) is globally asymptotically stable at the zero steady state.

Suppose that the opposite condition holds, i.e., \(\frac{\lambda p (1-s^p_i)}{\gamma }\ge 1\) for all \(i\in {\mathcal {I}}^p\) and for all \(p\in {\mathcal {P}}\). We drop the dependence on x of the positive steady-state pair for simplicity. We first show that a solution \(\bar{\varTheta }_+\in (0,1]\) exists for (10). Define \(\varPsi :[0,1]\rightarrow {\mathbb {R}}\) as: \(\varPsi (z)=\sum _{p\in {\mathcal {P}}} \left[ p\sum _{i\in {\mathcal {I}}^p}\frac{x^p_i\theta ^p_i}{\gamma +\theta ^p_iz} \right] \). Since \(\varPsi (z)\) is a strictly decreasing function of z, \(\varPsi (0)\) achieves the maximum value and \(\varPsi (1)\) achieves the minimum value of \(\varPsi (\cdot )\). Under the condition \(\frac{\lambda p (1-s^p_i)}{\gamma }\ge 1\), we obtain the inequality

$$\begin{aligned} \frac{\theta ^p_i}{\gamma }\ge 1\ge \frac{\theta ^p_i}{\gamma +\theta ^p_i}. \end{aligned}$$

Multiplying by \(p x^p_i\) and taking the summation over all \(i\in {\mathcal {I}}^p\) and all \(p\in {\mathcal {P}}\), we arrive at

$$\begin{aligned} \sum _{p\in {\mathcal {P}}} \left[ p\sum _{i\in {\mathcal {I}}^p}\frac{x^p_i\theta ^p_i}{\gamma } \right] \ge \sum _{p\in {\mathcal {P}}}p m^p \ge \sum _{p\in {\mathcal {P}}} \left[ p\sum _{i\in {\mathcal {I}}^p}\frac{x^p_i\theta ^p_i}{\gamma +\theta ^p_i} \right] , \end{aligned}$$

which is equivalent to \(\varPsi (0)\ge \bar{p}\ge \varPsi (1)\). Hence, there exists \(\bar{\varTheta }_+\in (0,1]\) such that \(\varPsi (\bar{\varTheta }_+)=\bar{p}\). Moreover, \(\bar{\varTheta }_+\) is unique because \(\varPsi (\cdot )\) is monotone. Accordingly, every element of \(\bar{I}_+\) is positive. Now, we proceed to study the stability of the positive steady-state pair \((\bar{I}_+,\bar{\varTheta }_+)\). Define \(\phi ^p_i=\frac{\lambda (1-s^p_i)}{\gamma }\). Consider the following equivalent system of (4):

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}I^p_i(t)=-I^p_i(t)+\phi ^p_i p(1-I^p_i(t))\varTheta (t). \end{aligned}$$

Let the density of the susceptible be \(U^p_i(t)=1-I^p_i(t)\), (5) can be rewritten as

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}\varTheta (t)= & {} \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p x^p_i\frac{\mathrm {d}}{\mathrm {d}t} I^p_i(t)\\= & {} \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p x^p_i\left[ -I^p_i(t) + \phi ^p_i p U^p_i(t) \varTheta (t) \right] \\= & {} \varTheta (t)\left[ \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p}\phi ^p_i U^p_i(t) p^2 x^p_i-1 \right] . \end{aligned}$$

Consider the following Lyapunov function for the equivalent dynamical systems above: \(V(t)=\frac{1}{2}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p}\left[ b^p_i (U^p_i(t)-\bar{U}^p_i)^2 \right] +\varTheta (t)-\bar{\varTheta }-\bar{\varTheta }ln\frac{\varTheta (t)}{\bar{\varTheta }}\), where the parameters \(b^p_i\) are defined as \(b^p_i=\frac{p x^p_i}{\bar{p} \bar{U}^p_i}\), and the term \(\bar{U}^p_i\) denotes the steady-state quantity of \(U^p_i(t)\). The time derivative of V(t) is

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}V(t)&= \sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} b^p_i (U^p_i(t)-\bar{U}^p_i)\frac{\mathrm {d}U^p_i(t)}{\mathrm {d}t} + \frac{\varTheta (t)-\bar{\varTheta }}{\varTheta (t)}\cdot \frac{\mathrm {d}\varTheta (t)}{\mathrm {d}t} \\&=\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} b^p_i (U^p_i(t)-\bar{U}^p_i)(I^p_i(t) - \phi ^p_i p U^p_i(t)\varTheta (t)) \\&\qquad +(\varTheta (t)-\bar{\varTheta })\left[ \frac{\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} \phi ^p_i U^p_i(t) p^2 x^p_i}{\bar{p}}-1 \right] . \end{aligned} \end{aligned}$$

Since \(\bar{U}^p_i=1-\bar{I}^p_i\) and \(\bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p^2 x^p_i \phi ^p_i \bar{U}^p_i=1\), we obtain

$$\begin{aligned} \begin{aligned} \frac{\mathrm {d}}{\mathrm {d}t}V(t)&= \sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} b^p_i (U^p_i(t)-\bar{U}^p_i)\left[ (I^p_i(t)-\bar{I}^p_i) - \phi ^p_i p(U^p_i(t)-\bar{U}^p_i) \right] \\&\qquad +(\varTheta (t)-\bar{\varTheta })\left[ \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} \phi ^p_i p^2 x^p_i (U^p_i(t)-\bar{U}^p_i) \right] \\&= \sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} b^p_i \left[ (U^p_i(t)-\bar{U}^p_i)(I^p_i(t)-\bar{I}^p_i)\right] \\&\qquad + \bar{p}^{-1} \sum _{p\in {\mathcal {P}}} \sum _{i\in {\mathcal {I}}^p} \frac{\phi ^p_i p^2 x^p_i}{\bar{U}^p_i}(U^p_i(t)-\bar{U}^p_i)\left[ U^p_i(t)\varTheta (t) -\bar{U}^p_i\bar{\varTheta }\right] \\&\qquad + \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} \phi ^p_i p^2 x^p_i \left[ (\varTheta (t)-\bar{\varTheta })(U^p_i(t)-\bar{U}^p_i) \right] \\&= -\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} b^p_i (U^p_i(t)-\bar{U}^p_i)^2\\&\qquad - \bar{p}^{-1}\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} \phi ^p_i p^2 x^p_i \varTheta (t)\left[ \frac{(U^p_i(t))^2}{\bar{U}^p_i}-2U^p_i(t)+\bar{U}^p_i \right] . \end{aligned} \end{aligned}$$

Since \(\forall U^p_i(t)\in [0,1]\), \(\frac{(U^p_i(t))^2}{\bar{U}^p_i}-2U^p_i(t)+\bar{U}^p_i\ge 0\), we conclude that \(\frac{\mathrm {d}}{\mathrm {d}t}V(t)\le 0\). Therefore, the positive steady-state pair \((\bar{I}_+,\bar{\varTheta }_+)\) is globally asymptotically stable. \(\square \)

Proof of Theorem 2

Proof

Consider the component \(\frac{x^p_i\theta ^p_iz}{\gamma +x^p_i\theta ^p_iz}\). For arbitrary \(z_1,z_2\in [0,1]\), the following holds:

$$\begin{aligned} \begin{aligned}&\left| \frac{x^p_i\theta ^p_iz_1}{\gamma +x^p_i\theta ^p_iz_1} -\frac{x^p_i\theta ^p_iz_2}{\gamma +x^p_i\theta ^p_iz_2} \right| \\&\quad =x^p_i\theta ^p_i \left| \frac{\gamma (z_1-z_2)}{(\gamma +x^p_i\theta ^p_iz_1)(\gamma +x^p_i\theta ^p_iz_2)} \right| \\&\quad = x^p_i\theta ^p_i \beta ^p_i \left| z_1-z_2 \right| , \end{aligned} \end{aligned}$$

where \(\beta ^p_i=\frac{1}{(1+\gamma ^{-1} x^p_i \theta ^p_i z_1)(1+\gamma ^{-1}x^p_i\theta ^p_i z_2)}<1\). Then, summing all components, we obtain

$$\begin{aligned} \left| M(z_1)-M(z_2) \right| = \frac{|z_1-z_2|}{\bar{p}} \left( \sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p x^p_i\theta ^p_i \beta ^p_i \right) . \end{aligned}$$

Since \(\bar{p} = \sum _{p\in {\mathcal {P}}}p m^p\), \(m^p = \sum _{i\in {\mathcal {I}}^p} x^p_i\), \(\theta ^p_i\in [0,1]\), and \(\beta ^p_i \in (0,1)\), we conclude that \(\bar{p}^{-1}(\sum _{p\in {\mathcal {P}}}\sum _{i\in {\mathcal {I}}^p} p x^p_i\theta ^p_i \beta ^p_i)\in (0,1)\). Therefore, \(M(\cdot )\) is a contraction mapping on [0, 1].

\(\square \)

Proof of Theorem 3

Proof

The constraint \(-F^p(x)\ge -y^p{\mathbf {1}}_{n^p}\) leads to

$$\begin{aligned} -EF^p(x) = -(x^p)^{\mathsf {T}}F^p(x) \ge -(x^p)^{\mathsf {T}}y^p{\mathbf {1}}_{n^p}\ge -y^p m^p. \end{aligned}$$

This implies that the objective function is nonnegative, i.e.,

$$\begin{aligned} \sum _{p\in {\mathcal {P}}}-EF^p(x)+\sum _{p\in {\mathcal {P}}}y^p m^p \ge 0. \end{aligned}$$

Suppose that \(x^*=(x^{1*},...,x^{P*})\) is an NE of the population game. Define \(y^*=(y^{1*},...,y^{P*})\) by \(y^{p*}=(m^p)^{-1}EF^p(x^{p*},x^{-p*})\) for all \(p\in {\mathcal {P}}\). We prove that the pair \((x^*,y^*)\) is an optimal solution to problem (12) by showing that it is feasible and \(\sum _{p\in {\mathcal {P}}}-EF^p(x^*) + \sum _{p\in {\mathcal {P}}}y^{p*} m^p=0\). To prove the feasibility of \((x^*, y^*)\), it suffices to prove \(-F^p(x^*)\ge -y^{p*}{\mathbf {1}}_{n^p}\) for all \(p \in {\mathcal {P}}\). Since

$$\begin{aligned} y^{p*}=(m^p)^{-1}(x^{p*})^{\mathsf {T}}F^p(x^{p*},x^{-p*}), \end{aligned}$$

we obtain

$$\begin{aligned} -y^{p*}{\mathbf {1}}_{n^p}=-(m^p)^{-1}(x^{p*})^{\mathsf {T}}F^p(x^{p*},x^{-p*}){\mathbf {1}}_{n^p}. \end{aligned}$$

Then, it suffices to prove

$$\begin{aligned} -(x^{p*})^{\mathsf {T}}F^p(x^{p*},x^{-p*}){\mathbf {1}}_{n^p}\le -m^p\begin{pmatrix} ({\mathbf {e}}^p_1)^{\mathsf {T}}F^p(x^{p*},x^{-p*}) \\ \vdots \\ ({\mathbf {e}}^p_{n^p})^{\mathsf {T}}F^p(x^{p*},x^{-p*}) \\ \end{pmatrix}, \end{aligned}$$
(36)

where \({\mathbf {e}}^p_i \in {\mathbb {R}}^{n^p}\) is the vector of all zeros except for a 1 at the ith entry for population \(p \in {\mathcal {P}}\). From Definition 1, we know that if \(x^{p*}_i>0\), \(s^p_i\in \arg {\text {max}}_{j\in {\mathcal {I}}^p}F^p_j(x^*)\). This shows that for all \(i\in {\mathcal {I}}^p\) such that \(x^{p*}_i>0\), the values of \(F^p_i(x^{p*},x^{-p*})\) are all equivalent to \({\text {max}}_{j\in {\mathcal {I}}^p}F^p_j(x^*)\). Then, for all i such that \(x^{p*}_i>0\), since \({\mathbf {1}}^{\mathsf {T}}x^{p*}=m^p\), equality holds in the ith row of (36). For \(j\in {\mathcal {I}}^p\) such that \(x^{p*}_j=0\), inequality holds in the jth row of (36) since \(F^p_j(x^*)\le \arg {\text {max}}_{i\in {\mathcal {I}}^p}F^p_i(x^*)\). Hence, the pair \((x^*,y^*)\) is feasible. From the definition of \(y^*\), we conclude that the objective function is zero under \((x^*,y^*)\). Therefore, \((x^*,y^*)\) solves (12).

Suppose that \(\tilde{x}=(\tilde{x}^1,...,\tilde{x}^P)\) and \(\tilde{y}=(\tilde{y}^1,...,\tilde{y}^P)\) solve (12). Since we have found the pair \((x^*,y^*)\) under which the objective value is zero, the objective value must be zero under the pair \((\tilde{x},\tilde{y})\), i.e., \(\sum _{p\in {\mathcal {P}}}-EF^p(\tilde{x}^p,\tilde{x}^{-p})+\sum _{p\in {\mathcal {P}}}\tilde{y}^p m^p=0\). For all x such that \(x\ge 0\) and \({\mathbf {1}}^{\mathsf {T}}x^p=m^p, \forall p\in {\mathcal {P}}\), \(-(x^p)^{\mathsf {T}}F^p(\tilde{x})\ge -\tilde{y}^p m^p\) holds. This leads to

$$\begin{aligned} \begin{aligned} \sum _{p\in {\mathcal {P}}}-(x^p)^{\mathsf {T}}F^p(\tilde{x}) \ge&\sum _{p\in {\mathcal {P}}}-\tilde{y}^p m^p =\sum _{p\in {\mathcal {P}}}-EF^p(\tilde{x}^p,\tilde{x}^{-p})\\ =&\sum _{p\in {\mathcal {P}}} -(\tilde{x^p})^{\mathsf {T}}F^p(\tilde{x}). \end{aligned} \end{aligned}$$

Since \(\forall p\in {\mathcal {P}}\), \(-(\tilde{x}^p)^{\mathsf {T}}F^p(\tilde{x})\ge -\tilde{y}^p m^p\) holds. Hence, \(\forall p\in {\mathcal {P}}\), \(-(\tilde{x}^p)^{\mathsf {T}}F^p(\tilde{x})=-\tilde{y}^p m^p\). Therefore, \(\forall p\in {\mathcal {P}}\) and \(\forall x^p\) feasible, we obtain

$$\begin{aligned} -(\tilde{x}^p)^{\mathsf {T}}F^p(\tilde{x})\le -(x^p)^{\mathsf {T}}F^p(\tilde{x}). \end{aligned}$$
(37)

Setting \(x^p = m^p {\mathbf {e}}^p_1\), \(x^p = m^p {\mathbf {e}}^p_2\), up to \(x^p = m^p {\mathbf {e}}^p_{n^p}\) in (37), we arrive at

$$\begin{aligned} (\tilde{x}^p)^{\mathsf {T}}F^p(\tilde{x}) \ge \left( {\text {max}}_{i\in {\mathcal {I}}^p} F^p_i(\tilde{x}) \right) m^p. \end{aligned}$$
(38)

Since \(\tilde{x} \ge 0\) and \({\mathbf {1}}^{\mathsf {T}}\tilde{x}^p = m^p\), equality holds in (38). Thus, we conclude that for \(i\in {\mathcal {I}}^p\) such that \(\tilde{x}^p_i>0\), \(i\in \arg {\text {max}}_{i\in {\mathcal {I}}^p}F^p_i(\tilde{x})\). Therefore, \(\tilde{x}\) is an NE of the population game, which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhao, Y. & Zhu, Q. Herd Behaviors in Epidemics: A Dynamics-Coupled Evolutionary Games Approach. Dyn Games Appl 12, 183–213 (2022). https://doi.org/10.1007/s13235-022-00433-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-022-00433-3

Keywords