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Abstract
The recent COVID-19 pandemic has led to an increasing interest in themodeling and analysis
of infectious diseases. The pandemic has made a significant impact on the way we behave
and interact in our daily life. The past year has witnessed a strong interplay between human
behaviors and epidemic spreading. In this paper, we propose an evolutionary game-theoretic
framework to study the coupled evolution of herd behaviors and epidemics. Our framework
extends the classical degree-based mean-field epidemic model over complex networks by
coupling it with the evolutionary game dynamics. The statistically equivalent individuals in
a population choose their social activity intensities based on the fitness or the payoffs that
depend on the state of the epidemics. Meanwhile, the spreading of the infectious disease over
the complex network is reciprocally influenced by the players’ social activities. We analyze
the coupled dynamics by studying the stationary properties of the epidemic for a given herd
behavior and the structural properties of the game for a given epidemic process. The decisions
of the herd turn out to be strategic substitutes. We formulate an equivalent finite-player game
and an equivalent network to represent the interactions among the finite populations. We
develop a structure-preserving approximation technique to study time-dependent properties
of the joint evolution of the behavioral and epidemic dynamics. The resemblance between the
simulated coupled dynamics and the real COVID-19 statistics in the numerical experiments
indicates the predictive power of our framework.
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1 Introduction

The COVID-19 pandemic has unprecedentedly impacted our society in many ways. Com-
panies, schools, and the government have shut down their offices. Many people work at
home, shop online, and communicate over zoom. The past year has witnessed a litany of
policies regarding social distancing, mask-wearing, and vaccination to prevent and mitigate
the spreading of the pandemic. The pandemic has made a significant impact on the way we
behave and interact in our daily life. We have observed a strong interplay between people’s
behaviors and the pandemic.When the pandemic transforms the pattern of social interactions,
the human behaviors also change how the infectious disease spreads. When the number of
COVID cases goes down, reopening policies enablemore social activities to return to normal.
If not done carefully, they would create second or third waves of infections, which we have
witnessed recently in many countries.

The behaviors of individuals in the same fashion create a collective behavioral pattern
that leads to the behavior of the population, which is also known as herd behavior. The herd
behavior plays an important role in the pandemic. It is often driven by policies or individual
incentives. For example, cities like New York and London have designed incentives for
individuals to be vaccinated to reach targeted herd immunity. Many countries have enforced
the policies of mask-wearing in public spaces to create herd behavior that reduces the risk of
mass infection.

Existing works on herd behaviors have focused mainly on topics related to financial
markets and economics [1, 35]. At the same time, epidemic processes are often studied as
stand-alone dynamical processes without incorporating individual behaviors into the model
[29]. The epidemic models alone from the literature are insufficient. There is a need for an
integrated framework that gives a holistic understanding of the pandemic together with herd
behaviors.

In this paper, we propose a dynamics-coupled evolutionary game-theoretic framework to
model the herd behaviors that are coupled with the spreading of epidemics. Noncooperative
games [2] are natural tools for the study of strategic decision-making of rational individuals
in competitive environments. When populations instead of a finite number of individuals are
of interest, the strategy profile of the population game captures the herd behavior. The reason
lies in that the macroscopic herd behaviors of the populations result from the microscopic
strategic choices of individuals without central coordination.

Evolutionary games [18, 34, 38, 40] study the strategic behaviors of the populations
in which one population can mutate and choose a strategy against another population to
maximize its fitness. The evolutionary game dynamics are population-level or mean-field
dynamics that describe the evolution or the adaptive revision of the strategies when the
populations interact with each other. The outcome of the evolutionary game and its associated
dynamics is defined by the concept of evolutionarily stable strategy (ESS), which refines the
concept of Nash equilibrium. The evolutionary dynamics provide a straightforward way to
describe the macroscopic strategic interactions among the populations and the evolution
of the herd behavior in response to the underlying changing environments, including the
information received by the population and the fitness of the population affected by the
epidemics.

One critical component of our evolutionary game framework is the modeling of the infec-
tious disease. In this work, we consider a class of mean-field epidemic models over complex
networks to capture the social interactions among the individuals [11, 27, 29, 30]. The indi-
viduals over the network are assumed to be statistical equivalent within the same class of
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Fig. 1 Dynamics-coupled
evolutionary game framework.
The herd behaviors can influence
epidemic spreading over the
complex network, generating the
epidemic state. The media reports
the information containing the
epidemic states, stimulating
individual strategy revisions. The
collective patterns of the new
strategies then reform the herd
behaviors

population. This assumptionmakes sense sincewe classify individuals based on their degrees,
and statistically equivalent individuals share the same possibility of getting infected by the
epidemic. The mean-field dynamics forthrightly describe the influences of the herd behavior
on the spreading of the epidemic. We use a complex network model that is characterized by
a degree distribution to represent the social interactions of the populations. Each individual
in the network is associated with a degree or the number of connections that determines the
probability of infection and thus the spreading of the disease.

The epidemicmodel is consolidated into the evolutionary game framework as illustrated in
Fig. 1. The spreading of the epidemic among the populations is affected by the social activity
intensities of the individuals. As the information and the policies concerning the epidemic
being communicated to the population through public media, individuals can respond to them
and adapt their social activities, constituting herd behavior at the population level. It is clear
from Fig. 1 that the state of the epidemics and the herd behaviors are interdependent. This
interdependence is one of the features of our framework which differs from previous works
as will be discussed in Sect. 2.

The integrated framework inFig. 1 can bemathematically described by a systemof coupled
differential equations. One set of differential equations represents the mean-field evolution-
ary dynamics of the game strategies. The other set of differential equations describes the
epidemic process. It is critical to examine the structural properties of the coupled dynamics,
including the stability and the steady state. To this end, we first discuss the stability of the
epidemic dynamics under fixed herd behavior and then analyze the structural properties of the
evolutionary game under the steady states. We find out that, under certain conditions, there
is a unique nontrivial globally asymptotically stable steady state given the herd behaviors.
The players’ decisions in the game turn out to be strategic substitutes. This property makes
the ESS or the Nash equilibria achievable even when the individuals revise their strategies
myopically on their own. This structural property is shown to hold even when the epidemic
is not at its steady state.

We formulate a unified optimization problem to compute the Nash equilibrium based
on an equivalent representation of the population game as a finite-player game problem,
where each population is viewed as a player. Furthermore, we develop a structure-preserving
approximation technique to analyze the time-dependent evolution of the herd behaviors and
the epidemics. We show that this approximation preserves the strategic substitutes property
of the game.

The proposed dynamics-coupled evolutionary game provides a suitable framework to
study the impact of misinformation on epidemics. We use numerical experiments to compare
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the simulated infection curve with the COVID-19 statistics of the infected in New York
City. The prediction of two peaks in the pandemic over a time interval of interest provides a
promising analytical and policy design tool for the pandemic.

The structure of this paper is as follows. Section2discusses the relatedworks.We introduce
the general framework in Sect. 3. In Sect. 4, we present analytical results for the case where
the epidemic evolves at a faster timescale. We characterize the steady-state behavior of the
epidemic, investigate the Nash equilibrium and structural properties of the game, and study
the impact of misinformation. In Sect. 5, we extend the structural properties to different
timescales and develop a approximation scheme to study time-dependent behaviors. Section 6
presents the numerical experiments. We conclude the paper in Sect. 7.

2 RelatedWork

Epidemic models over networks The mean-field approach has been a standard tool to study
the spreading of epidemics over complex networks [5, 11, 29–31]. The key components in
this approach are the infection probabilities of the nodes, which bridge the degree distribution
of the nodes with the contagion events. This model has been used to model spreading over
networks for a diverse range of applications. For example, in [16], the authors have investi-
gated multi-strain epidemic dynamics over complex networks to study the control policies
when a single pathogen createsmany strains of infections of different features. Another recent
endeavor is [8], where the authors have focused on the optimal quarantining policies when
multiple diseases coexist and have observed a switching phenomenon between equilibria.
Our framework extends the statistical equivalence assumptions of the standard degree-based
mean-field approach. The players in our framework are distinguished by their degrees of
connections and the strategies they choose. The proposed coupled system of differential
equations describes the flow of contagion when individuals adopt different social activity
intensities.
Game modeling of networked populations The building block of our evolutionary game
framework is a population game [34], where there are infinitely many players. We partition
the set of players into subpopulations based on a statistical equivalence assumption. This
enables us to position the population on a complex network and use the distribution of
players’ degrees of connectivity as the characteristics. Our method resembles the mean-field
games [7, 19, 23, 41] in the setting of a large population with small players who have little
influence on the whole population. The epidemic state equation in our game is also a mean-
field-type differential equation. The difference between our framework andmean-field games
lies in that players in our framework revise strategiesmyopically according to given protocols
anticipating the payoffs after given time periods instead of solving optimal control problems.
This type of revisions leads to evolutionary dynamics rather than Hamilton–Jacobi equations.
In [37], the authors have extended mean-field games to finite communication networks. In
their work, the network influences the state transitions through the adjacency matrix, which
is different from our setting. Our framework is also related to network aggregative games in
[15, 28], with the difference lying in the externalities. In our model, individual payoffs are
influenced by all the actions of the other players in the population in an average sense, since
the epidemic evolves on a complex network. However, in network aggregative games, the
payoff of a player is only directly influenced by an aggregation of actions of her neighbors
defined by the given finite network.
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Human behavior under epidemicsThe connection ofmodels of human behavior and epidemic
models has been successfully established in the celebrated work [3]. The authors have char-
acterized the vaccination decisions in populations using the concept of convergently stable
Nash equilibrium. The vaccination game [3] has then been used to guide policies on social
distancing [14] and analyze imitative behaviors in vaccination [12]. We are motivated by
the problem settings of [3] and consider a heterogeneous population over complex networks,
whose connectivity is characterized by the degree distributions of individuals.We use specific
dynamic processes to model the evolution of the herd behaviors, enabling observations on
the time-dependent properties of herd behaviors. This line of research has been developing
in a fast pace recently. In [6], the authors have proposed the state policy coupled dynamics
model for extending the current evolutionary game by introducing independent state transi-
tions of players. They have focused on the coupling of replicator dynamics and individual
player’s Markov decision process. Our framework takes a different route by unifying the
mean dynamic of the states of the population and the mean-field state transitions of players
over the network to capture the interdependent evolution of herd behavior and epidemics over
networks. In [24], the authors have considered a coupled disease–human behavior model to
study the long-term impact of social distancing on disease spreading. They have focused on
the replicator dynamics and the stability of the epidemic steady states. However, we empha-
size the structural property of the herd behavior and include time-dependent behavior as part
of our analysis. There are also recent endeavors on addressing issues caused by theCOVID-19
pandemic. In [22], the authors have considered an evolutionary rate of quarantine in the com-
partmental epidemic model. This integration of behavioral dynamics and virus spreading has
enabled them to conclude numerically the ineffectiveness of natural shield immunity in elim-
inating an epidemic without additional social control measures. In [44], consistency between
the infection rate in the SI model and the population proportion of people not being mindful
in the epidemics has been established. This discovery has led to a transmission frequency
equation describing the changes in the number of infected people caused by the COVID-19
pandemic. In [39], the author has proposed a sophisticated mean-field-type game framework
to capture comprehensive individual and authority behaviors under epidemic propagation.
The parameters calibrating the characteristics of players and epidemic states are obtained
using real COVID-19 statistics, making the model data-driven. Numerous numerical exper-
iments have proved the practical applicability of the equilibrium of the game obtained by
solving a corresponding Bellman system. In [25], the authors have used game-theoretic anal-
ysis to show that the bilateral deals between rich nations and vaccine manufacturers can be
configured to improve the global supply of vaccines.
Other related works Recently in [9], the authors have studied imitation dynamics on net-
works. They have designed a pairwise information exchange scheme and have focused on
potential games. While they have emphasized pairwise communications between nodes over
a given finite network, we pay more attention to the development of the strategy profile of
the populations when the required information is broadcast publicly. In [21], evolutionary
games are used to analyze information diffusion over networks; evolutionary stability is also
investigated for different types of networks. A random number of players have also been
investigated through evolutionary Poisson games in [17], where the authors have developed
global objectives for the players.
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3 Problem Setting

In this section, we describe our dynamics-coupled evolutionary game framework in detail.
We first introduce the general framework and then turn to the specific setting under epidemic.

3.1 The General Framework

We consider N ∈ N+ players (nodes) over a network. Each player belongs to a subset in the
set P := {1, 2, . . . , P} representing its degree of connectivity, i.e., a player in p ∈ P has
degree p. Let N p ∈ N+ denote the number of players who has degree p. We have N = N 1+
N 2+· · ·+N P . The degree distribution is then denoted by [mp]p∈P := (m1,m2, . . . ,mP ) ∈
[0, 1]P , where mp = N p

N ,∀p ∈ P .
Let Ξ be the finite state space of all the players with |Ξ | = L . At a given time, a player

is in a state ξ ∈ Ξ , which describes the current type of the player. In the context of epidemic
spreading, elements in Ξ describe the infection status of players, such as “Susceptible,”
“Infected,” or “Recovered” in the classic SIR model [29]. Let S p := {s p1 , s p2 , . . . , s pn p } ⊂
[0, 1]n p

be the finite strategy space of players with degree p with |S p| = n p . A strategy in
S p is a social behavior that affects the spreading of the epidemic. For example, a strategy
can represent the willingness to wear masks or the probability to take vaccinates.

Let I p := {1, 2, . . . , n p} denote the index set of the strategies inS p,∀p ∈ P . The strategy
indexed by i ∈ I p is s pi ∈ S p . We assume throughout this paper that the strategies in each set
S p,∀p ∈ P, are listed in an increasing order, i.e., for any i, j ∈ I p such that i > j , we have
that s pi > s pj . Let S := ∏

p∈P S p with |S| = ∑
p∈P n p = n. Let w p

ξ (t) denote the fraction

of players with degree p who are in state ξ at time t . Let x p
i (t) denote the fraction of players

with degree p playing strategy s pi at time t . We use w(t) = (w1(t), ..., wP (t)) ∈ W ⊂ R
PL+

and x(t) = (x1(t), ..., x P (t)) ∈ X = ∏
p∈P X p ⊂ R

n1×···×nP+ to denote the concatenations

of w
p
ξ (t) and x p

i (t), respectively. Note that we refer to x(t) as the herd behavior at time t .

Remark 1 The reason for considering only a finite number of states is that it is sufficient in
describing the infection status of individuals in epidemics. Popular compartmental epidemic
models use a few compartments to classify individuals based on the possibility they catch the
disease, the ability they spread the disease, and their own health status. For example, three
compartments are adopted in SIRmodel and four compartments are used in SEIRmodel [29].
These compartments describe comprehensive and concise patterns of virus transmission and
variations on the size of each group of individuals. In [39], 17 infection states have been
considered for the modeling of real COVID-19 pandemic. Their numerical experiments have
shown that 17 infection states capture reported statistics of COVID-19 across many countries
with various socioeconomic conditions.

Remark 2 There are two reasons for considering finite strategy spaces. First, evolutionary
games emphasize the revisions of pure strategies. In our population game setting, pure NE
always exists. Hence, finite strategy spaces help us elaborate the relation between revision
protocols andNE.An infinite strategy space is often linkedwithmixed strategies. Sincemixed
strategies are probability distributions over the pure strategies and they form a continuum.
Second, the structural property results that we will discuss in Sects. 4 and 5 are related to the
externalities of players. The externalities only rely on the ordering of the strategies instead
of the values of strategies or the sizes of the strategy spaces.
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Suppose that players are constantly interacting physically over the network. By physical
interactions, we refer to the face-to-face social interactionswhich can cause potential changes
in players’ states. This corresponds to the fact that infections can happen during our daily
social lives. Interacting in online chat rooms is an example of social interaction which is not a
physical interaction, since chatting online will not cause contagion. We use the degree-based
mean-field approach [11, 29] to capture the coupled dynamical systems on the large network.
The players are assumed to be statistically equivalent if they have the same degree and the
same strategy. In other words, in the large population, the players are distinguishable only
based on their degree and their strategy.

Let Qp
ξ : W × X × [0, 1]P → R be a Lipschitz function describing the dynamical

evolution of the fraction of players with degree p who are in state ξ . Functions Qp
ξ are

influenced by individual state transitions. For example, when ξ denotes the “Infected” state
in an epidemic model, Qp

ξ ,∀p ∈ P would consist of a negative term describing the natural
recovery from a disease and a positive term representing infections. The coupled dynamics
of players’ state transitions are as follows:

ẇ
p
ξ (t) = Qp

ξ

(
w(t), x(t), [mp]p∈P

)
, ∀p ∈ P, ∀ξ ∈ Ξ. (1)

Note that in (1), the dependence on w(t) emphasizes the coupling of players’ state tran-
sitions, and the dependence on [mp]p∈P illustrates the effect of the network. We use w̄(x)
to denote the steady-state value of w(x). The game mechanism shown in Fig. 1 coordinates
the information acquisition of the players. As the state evolves, public media broadcasts
information relevant to the states w and the strategy profile x to all the players at times. We
assume that the times between information broadcasts are independent, and they follow a
rate τ exponential distribution. Each information broadcast triggers a strategic interaction
where the players update their strategies based on the current information received. For all
i, j ∈ I p , let Rp

i j (w(t), x(t)) : W × X → [0, 1] denote a continuously differentiable func-

tion representing the probability of a player with degree p switching from strategy s pi ∈ S p

to strategy s pj ∈ S p . Functions Rp
i j resemble the revision protocols in evolutionary games,

with the difference of the dependence on the state w. They capture individual perceptions of
the payoffs corresponding to current state and others’ strategies.

The evolution of the fraction of players with degree p playing strategy s pi in the strategic
interactions at time t can be described as follows. Consider a small time period (t, t + dt).
There will be τdt expected information broadcasts during this period. The change of the
number of players with degree p playing strategy s pi during (t, t + dt) can be expressed as:

N

⎛

⎝
∑

j∈I p

x p
j (t)R

p
ji (w(t), x(t)) −

∑

j∈I p

x p
i (t)Rp

i j (w(t), x(t))

⎞

⎠ τdt . (2)

By considering fractions of players in (2), we obtain the mean dynamic as follows:

1

τ
ẋ p
i (t) =

∑

j∈I p

x p
j (t)R

p
ji (w(t), x(t))

−
∑

j∈I p

x p
i (t)Rp

i j (w(t), x(t)), ∀i ∈ I p,∀p ∈ P.

(3)

Equations (1) and (3) constitute a system of coupled differential equations describing
the joint evolution of states and strategies. This coupled system is depicted in Fig. 2. The
assumption that functions Rp

i j are continuously differentiable with respect tow and x implies
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Fig. 2 Coupled evolution of
evolutionary game and epidemic
dynamics. The evolutionary
dynamics (3) shapes the social
state x . Changes in the social
states influence the spreading of
the epidemic, reforming the
epidemic state dynamics (1).
Then, (1) outputs new state w,
which in return affects the
evolutionary dynamics (3)

that they are locally Lipschitzwith respect tow and x . Combining the assumption of functions
Qp

ξ being Lipschitz, the existence of solutions to the coupled system (1) and (3) is guaranteed
[6].

Since the coupled evolution in (1) and (3) involves the subpopulations of the players
instead of individual players, we naturally interpret the above setting as the interactions
among populations when the total number of players goes to infinity, i.e., N → ∞. In the
sequel, we refer to the players with degree p ∈ P as population p.

For all i ∈ I p , let F p
i : W × X → R denote the payoff function of a player with degree

p who plays strategy s pi ∈ S p . In general, F p
i depends on w(t) and x(t). The dependence

on x(t) characterizes the game-theoretic aspect of the framework. The dependence on w(t)
reveals the coupling of all players’ state evolutions. We use F = (F1, ..., FP ) ∈ R

n1×···×nP

to denote the concatenation.
Connecting with the standard definition of evolutionary games [34], we refer to

the a herd behavior x as a social state and call, with a slight abuse of terminology,
R := (R1, . . . , RP ) ∈ [0, 1]n1(n1−1)×···×nP (nP−1) a revision protocol, where Rp :=
(Rp

12, . . . , R
p
1n p , . . . , R

p
np1, . . . , R

p
np(nP−1)

)T ∈ [0, 1]n p(nP−1),∀p ∈ P .We refer to the game
defined by the payoff function F , the evolutionary dynamics (3), and the coupled state dynam-
ics (1) as a dynamics-coupled evolutionary game.

Definition 1 Let NE(F) denote the set of Nash Equilibrium (NE) of the game defined by
the payoff F and the coupled state transitions (1). A social state x ∈ X is an NE, i.e.,
x ∈ NE(F), if for all p ∈ P , x p ∈ mp BRp(x), where the set BRp(·) denotes the set of
best responses of population p, i.e., BRp(x) := {z ∈ R

n p

+ : 1Tz = 1, zi > 0, if s pi ∈
argmax j∈I p F p

j (x, w̄(x))}.
The difference between Definition 1 and the standard NE of population games [34] is

that x is the best response to the payoffs generated by x together with the steady-state value
of (1) given x . This integrates the coupling of (1) and (3) into the definition of NE of our
framework.

Remark 3 In the following sections, the terms social state and herd behavior will be used
interchangeably when we refer to x .

3.2 The Framework Under Epidemics

Weuse the susceptible–infected–susceptible (SIS) compartmentalmodel over a degree-based
network [30] with degree distribution [mp]p∈P to represent the state evolution of the players.
The state space is Ξ = {“Susceptible”, “Infected”}. Compared to the classic SIR model,
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the SIS model treats individuals in the “Recovered” state as “Susceptible” again. In our
framework, the SIS model is the proper choice for studying herd behaviors in epidemics,
especially diseases like the COVID-19, for the following two reasons. First, our goal is
not merely studying the epidemic dynamics on its own, but focusing more on the joint
evolution of herd behaviors and epidemic dynamics. Hence, in our framework, we consider
a fixed population interacting socially over the complex network. In other words, the size
of population involved in social activities is a constant. This assumption of constant size
helps us get rid of the individuals in the “Recovered” state, since if an individual is immune
to the virus, it is equivalent to say that this individual is not interacting with others over
the network. When it comes to herd behaviors, these individuals do not contribute. In the
literature, the “Recovered” state is sometimes referred to as the “Removed” state to include
the individuals who are dead. These individuals have no social impact on others either. Note
that although there are many reported death cases across the world during the recent COVID-
19 pandemic, the total number of deaths is still relatively small compared to the susceptible
and infected portions of the population. Second, it is known that infected individuals develop
no long-lasting immunity against the COVID-19 even after recovering from it. Hence, from
the perspective of infectious diseases, it is proper for us to use a model which describes the
spreading of diseases like influenza and common cold which can cause reinfections. The SIS
model is a standard choice for infections which have no immunity upon recovery. Therefore,
we adopt the SIS model to describe the spreading of infections in our framework under
epidemics.

Weuse I pi (t) to denote the fraction of the infected players in population p adopting strategy
s pi ∈ S p at time t , ∀i ∈ I p,∀p ∈ P . The strategies s p1 , s p2 , . . . , s pn p ∈ [0, 1], p ∈ P, are in
the action sets of an individual with degree p. We refer to the strategy s pi as the choice of
social inactivity intensity level i of an individual of degree p. The social inactivity intensity
is quantized into n p levels for an individual to choose from. Naturally, the chosen social
activity intensity (SAI) level is given by 1 − s pi ,∀i ∈ I p,∀p ∈ P , which can be viewed as
the probability of a player behaving actively in the face-to-face physical interactions through
all of her connections with other players. A strategy s pi , i ∈ I p, p ∈ P, close to 1 means
that the player is considerably mindful when interacting socially through her connections
with others. Note that in the context of epidemics, the herd behavior describes the collective
patterns in the populations’ social activity intensities.

Given a herd behavior x ∈ X , the evolution of I pi (t) is also affected by a recovery rate
γ ∈ R+ and a contagion rate λ ∈ R+. Under the SIS model, (1) can be written as the
following dynamical system describing the time evolution of I pi (t):

İ pi (t) = −γ I pi (t) + λ
p
i

(
1 − I pi (t)

)
pΘ(t), (4)

where λ
p
i = λ(1 − s pi ) ∈ R+ denotes the activity-aware contagion rate of a player with

degree p and SAI 1 − s pi . The second term on the right-hand side of (4) corresponds to the
growth of I pi (t). This growth is proportional to the activity-aware contagion rate λ

p
i , the

density of susceptible players 1− I pi (t), the degree p, and the probability Θ(t) ∈ [0, 1] that
a link is connected to an infected player. This probability can be expressed as follows:

Θ(t) =
∑

p∈P
(∑

i∈I p px p
i I

p
i (t)

)

∑
p∈P pmp

. (5)

Since we have assumed the statistical equivalence of players with the same degree and
the same strategy, the numerator of the right-hand side of (5) consists of the sum of the
probabilities that a link is connected to an infected player within each equivalence class. The
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probability of a link connecting to an infected player with degree p choosing strategy s pi is
proportional to px p

i I
p
i (t). Hence, we obtain (5). The consistency of (4) and (5) follows from

a similar reasoning as discussed in [30], since the effect of SAI has already been considered
in the activity-aware contagion rate λ

p
i .

The probability (5) couples the dynamics in (4) corresponding to each strategy of each
population. The concatenation of all n fractions of infected is I (t) = (I 1(t), ..., I P (t)) ∈
[0, 1]n1×···×nP . We use Ī pi and Θ̄ to denote the steady-state quantities of I pi (t) andΘ(t). The
concatenations are Ī and Ī p .

Note that the differential equation (4) corresponds to the state transition dynamics (1) in
the general framework. Since the size of the population is fixed and there are only two possible
states, i.e.,Ξ = {“Susceptible”, “Infected”}, (4) is sufficient in describing the state transitions
of the population. The mean dynamic describing the evolution of individual strategies (3)
will be specified later when we discuss the stability of the game in Sect. 4.4.

Players with degree p who choose strategy s pi ∈ S p, i ∈ I p, p ∈ P have payoff F p
i ,

which depends on the information broadcast at the time of sampling, i.e., I pi (t), as defined
in Sect. 3.1. In the context of the epidemic, it takes the following form:

F p
i = s pi Uina + (1 − s pi )U p,i

act , (6)

where U p,i
act : [0, 1] → R+ and Uina ∈ R. In (6), s pi Uina represents the expected utility of

being socially inactive; (1− s pi )U p,i
act represents the expected utility of being socially active.

The function U p,i
act ,∀i ∈ I p,∀p ∈ P corresponds to the reward from getting infected

through physical interactions on the network. Therefore, we let U p,i
act be decreasing in

η
p
i ∈ [0, 1], which represents the probability that a player in population p playing strat-

egy s pi is infected. The probability that a player is infected can be equivalently understood as
the fraction of players within the same statistical equivalent class who are infected. Thus, we
obtain η

p
i = O p

i (I pi (t)), whereO p
i : [0, 1] → [0, 1] is a player’s observation of the infected

fraction of players at the time of an information broadcast. Note that the case of imperfect
observations will be discussed in Sect. 4.5. For now, we consider the case of perfect obser-
vations, i.e., ηp

i = I pi (t). Since the evolution (4) is coupled and the term (5) depends on the
herd behavior x , the payoff satisfies the definition in Sect. 3.1. Note that the rate parameter
τ determines the timescale of the coupled system of differential equations. The sampled
epidemic status is at a steady state if 1

τ
→ ∞ and is time-dependent otherwise.

In this paper, we considerU p,i
act = −ractη

p
i for all players with reward parameter ract ∈ R+,

for simplicity reasons. The term Uina corresponds to isolating oneself from others. Hence,
we assume that Uina is a negative constant reward for all players, i.e., Uina = rina ∈ R−.

By defining r = rina
ract

∈ R− to be the relative reward of being socially inactive against
being socially active, we obtain the payoff function suitable under (4) as follows:

F p
i = s pi r − (1 − s pi )η

p
i . (7)

Note that we have dropped the dependence of F p
i and η

p
i on the epidemic state I when we

analyze equilibrium behaviors, since the epidemic state is a function that only depends on
the social state x , as can be observed in Definition 1.
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4 Long-Term Behavior

In this section, we study the long-term behavior of our model under the assumption that
1
τ

→ ∞. The epidemic dynamics (4) are assumed to reach the steady state more quickly
than the herd behaviors. When an information broadcast changes the behavior, the epidemic
dynamics would respond to it quickly and reach a steady state before the next information
broadcast arrives.

Remark 4 The assumption that the epidemic dynamics evolve fast is for the purpose of
investigating herd behaviors when the individuals anticipate the elimination of the virus
in the end. This assumption also leads to results related to the relations between stability of
epidemic steady states and a variant of the basic reproduction number [29]. Later in Sect. 5,we
relax this assumption and extend our results to the settingwhere the time between information
broadcasts is arbitrary.

4.1 Steady States of Epidemic Dynamics Given Social States

From (4) and (5), we obtain the steady state as

Ī pi = θ
p
i Θ̄

γ + θ
p
i Θ̄

, (8)

where θ
p
i = λp(1 − s pi ), and

Θ̄ =
∑

p∈P
(
p

∑
i∈I p x

p
i Ī

p
i

)

∑
p∈P pmp

. (9)

Let p̄ := ∑
p∈P pmp denote the average degree of the network. By combining (8) and (9),

we obtain the equation containing only Θ̄ as follows:

Θ̄ = p̄−1
∑

p∈P

(

p
∑

i∈I p

x p
i θ

p
i Θ̄

γ + θ
p
i Θ̄

)

. (10)

From (10), we observe that Θ̄0 = 0 is always a solution. Accordingly, Ī pi,0 = 0 for all d and

for all i . We refer to ( Ī0, Θ̄0) as the zero steady-state pair. At this steady state, players are
uninfected no matter which statistical equivalent class they belong to; and no link leads to an
infectious player. The zero steady-state pair is often referred to as the disease-free state [8].
Meanwhile, there exist positive steady states, which arise from dividing Θ̄ from both sides
of (10) when Θ̄ �= 0:

1 = p̄−1
∑

p∈P

(

p
∑

i∈I p

x p
i θ

p
i

γ + θ
p
i Θ̄

)

. (11)

In a positive steady-state pair ( Ī+(x), Θ̄+(x)), we have Θ̄+(x) ∈ (0, 1]. It shows that a link
possesses a positive probability to connect to an infected node. In addition, Ī pi,+(x) = 0 if

and only if s pi = 1. It explains that a player can be safe from the epidemic only if she lives
a totally isolated life. Note that the positive steady-state pair depends on the social state x ,
since (10) contains x . The next result presents the conditions on the stability of the zero
steady-state pair and the positive steady-state pair.
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Theorem 1 Consider the dynamical system in (4) and (5). Given a social state x ∈ X ,
the zero steady-state pair ( Ī0, Θ̄0) = (0, 0) ∈ [0, 1]n × [0, 1] is globally asymptotically

stable if
λp(1−s pi )

γ
< 1 for all i ∈ I p and all p ∈ P; the unique positive steady-state pair

( Ī+(x), Θ̄+(x)) ∈ [0, 1]n × [0, 1] is globally asymptotically stable if λp(1−s pi )

γ
≥ 1 for all

i ∈ I p and all p ∈ P .

Proof See “Appendix 1.” 	


The term
λp(1−s pi )

γ
can be considered as the activity-aware basic reproduction rate in the

setting of complex networks. The activity-awareness, same as in the activity-aware contagion
rate λ

p
i , comes from the fact that the contagion rate λ is scaled by the SAI 1− s pi . This brings

individual decisions on the social behaviors into the contagion effect of a virus. The degree
p reflexes the influences of the complex network. The crucial population in determining
whether ( Ī+(x), Θ̄+(x)) is globally asymptotically stable is the one with the smallest product
p(1− s pi ). In other words, if the subpopulation with the lease combination of degree and SAI
has an activity-aware basic reproduction greater than 1, then the disease cannot be eliminated
in the long run. On the contrary, if the subpopulation with the highest combination of degree
and SAI has an activity-aware basic reproduction smaller than 1, then eventually we will
reach the disease-free steady state.

We focus on the positive steady-state pair ( Ī+(x), Θ̄+(x)) in the following sections, since
it reveals richer properties of the herd behaviors.

4.2 Numerical Computation of the Steady States

Define M : [0, 1] → R as M(z) = p̄−1 ∑
p∈P

[

p
∑

i∈I p
x p
i θ

p
i z

γ+θ
p
i z

]

. The computation method

to obtain a steady state relies on the next result.

Theorem 2 The function M(·) is a contraction mapping on [0, 1].

Proof See “Appendix 2.” 	


Theorem 2 indicates that the steady state Θ̄ can be obtained by the fixed-point iterations
using the mapping M(·).

4.3 Equilibrium Analysis

Before focusing on the NE, we first introduce an alternative interpretation of the popula-
tion game in Sect. 3.2. Consider an equivalent P-player game where a player with degree
p plays a weighted-mixed strategy x p from the set S p . By weighted-mixed strategy, we
refer to the restriction that 1Tx p = mp . Given a social state x = (x p, x−p), where x−p

denotes the population states of populations other than population p, the expected payoff of
player p playing weighted-mixed strategy x p is EF p(x p, x−p) := (x p)TF p((x p, x−p)) =∑

i∈I p x
p
i F

p
i ((x p, x−p)). Inspired by this equivalent game, we present the next result char-

acterizing the NE of our evolutionary game.
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Theorem 3 A social state x∗ ∈ X is an NE of the game defined in Sect. 3.2 if and only if it
solves the following optimization problem:

minx∈X ,y∈RP

∑

p∈P
−EF p(x p, x−p) +

∑

p∈P
y pm p

s.t. − F p(x) ≥ −y p1n p , ∀p ∈ P,

x p ≥ 0, 1Tx p = mp, ∀p ∈ P.

(12)

Proof See “Appendix 3.” 	

The first usage of Theorem 3 is for testing whether a given social state is an NE. The

details are presented in “Appendix 3.” The second usage is solving for NE. A variety of
algorithms can be used to numerically solve the optimization problem (12), for example,
see [33]. Among them, gradient-based algorithms are popular among practitioners and have
been proved to be effective in practice. At each iteration of a gradient-based algorithm, the

descent direction consists of the gradient vectors
∂F p

i
∂x (x) for all i ∈ I p and for all p ∈ P .

We provide below the explicit expression of the gradient vector given a social state.
With a slight abuse of notation, we specify the dependence on x by writing the steady-

state quantities using Θ̄(x) and Ī pi (x). We express the gradient using the chain rule as
∂F p

i
∂x (x) = − (1−s pi )γ θ

p
i

(γ+θ
p
i Θ̄(x))2

· ∂Θ̄
∂x (x). Next, we derive the term ∂Θ̄

∂x (x) leveraging (11). Define

H : R × R
n → R by H(Θ, x) = ( p̄)−1 ∑

p∈P
(

p
∑

i∈I p
x p
i θ

p
i

γ+θ
p
i Θ

)

− 1. It is clear from

the definition that H is continuously differentiable with respect to both arguments. Suppose,
given x∗, the pair (Θ∗, x∗) solves (11), i.e., H(Θ∗, x∗) = 0. The Jacobian of H with respect
to the first argument at (Θ∗, x∗) is JΘ(Θ∗, x∗) := ∂H

∂Θ
((Θ∗, x∗)) ∈ R. From the proof of

Theorem 1, we know that Θ∗ > 0 if x∗ is a social state. Hence, JΘ(Θ∗, x∗) < 0. Invoking
the implicit function theorem, we observe that there exists a neighborhood VΘ of Θ∗ and
a neighborhood Vx of x∗, such that there is a unique continuously differentiable function
h : Vx → VΘ satisfying h(x∗) = Θ∗ and H(h(x∗), x∗) = 0. Furthermore, the derivative of
h(·) can be expressed as

∂h

∂x p
i

(x∗) = −(JΘ(h(x∗), x∗))−1 ∂H

∂x p
i

(h(x∗), x∗). (13)

Thus, the term ∂Θ̄
∂x (x) can be obtained directly using (13) at the given social state x . Therefore,

the explicit gradient vectors are of the form

∂F p
i

∂x
(x) = (1 − s pi )γ θ

p
i

(γ + θ
p
i Θ̄(x))2

(

(JΘ(Θ̄(x), x))−1 ∂H

∂x
(Θ̄(x), x)

)

, (14)

where Θ̄(x) is obtained from the fixed-point iterations using the mapping M(·) and
∂H

∂x
(Θ̄(x), x) = 1

p̄

(
1·θ11

γ+θ11 Θ̄(x)
· · · P·θ P

nP

γ+θ P
nP

Θ̄(x)

)

. (15)

In general, the optimization problem (12) is nonconvex. However, gradient-based algo-
rithms are still applicable to find stationary points, i.e., pointswith sufficiently small gradients.
Moreover, we know from the proof of Theorem 3 that the global optimal point yields a zero
objective value. Therefore, we can test the stationary point obtained using gradient-based
algorithms and using the objective value to determine whether it is a potential global optimal
point, i.e., an NE social state.



196 Dynamic Games and Applications (2022) 12:183–213

4.4 Long-Term Property of the Game

Structural property of the game Stability studies the structural properties of the games under
which sequential plays following specific revision protocols converge to an NE. In this
section, we analyze players’ incentives to change their strategies when the game is played
sequentially.

Let DF(x) := d
dx F(x) ∈ R

n×n denote the derivative of the payoffs with respect to the
social state. From (14), we can express DF as

DF(x) = γ

p̄
(JΘ(Θ̄(x), x))−1

⎛

⎜
⎜
⎜
⎜
⎝

(1−s11 )θ11
(γ+θ11 Θ̄(x))2

...
(1−sP

nP
)θ P

nP

(γ+θ P
nP

Θ̄(x))2

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

1·θ11
γ+θ11 Θ̄(x)

...
P·θ P

nP

γ+θ P
nP

Θ̄(x)

⎞

⎟
⎟
⎟
⎟
⎠

T

. (16)

In some classes of games, such as potential games and stable games, various evolutionary
dynamics show global stability. These games require special structures of the derivative
matrix DF(x). Next, we investigate the structural properties of (16).

Theorem 4 Under the assumption that every information broadcast takes place at the steady
state of (4), i.e., 1

τ
→ ∞, the game defined in Sect. 3.2 is a submodular game.

Proof Let p and q be two populations in set P . p and q can represent the same population.
Let DF p

q (x) ∈ R
n p×nq denote the block in (16) corresponding to dF p(x)

dxq . We obtain the
following:

DF p
q (x) = γ (JΘ(Θ̄(x), x))−1μp · (νq)T,

where

μp =
(

(1−s p1 )θ
p
1

(γ+θ
p
i Θ̄(x))2

· · · (1−s pn p )θ
p
n p

(γ+θ
p
i Θ̄(x))2

)T

∈ R
n p

, νq =
(

qθ
q
1

γ+θ
q
1 Θ̄(x)

· · · qθ
q
nq

γ+θ
q
nq Θ̄(x)

)T

∈ R
nq .

Define the difference matrix

Σ p =

⎛

⎜
⎜
⎜
⎝

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

⎞

⎟
⎟
⎟
⎠

∈ R
(n p−1)×n p

, ∀p ∈ P.

Matrix Σq ∈ R
(nq−1)×nq is defined in the similar fashion. To prove the submodular property

of the payoff functions, we need to show that the inequality Σ pDF p
q (x)(Σq)T ≤ 0 holds

for all p, q ∈ P and for all x ∈ X . Ignoring positive constant terms, we obtain the following
equivalent condition for all p, q ∈ P ,

⎛

⎜
⎝

μ
p
2 − μ

p
1

...

μ
p
nd

− μ
p
n p−1

⎞

⎟
⎠

(
ν
q
2 − ν

q
1 · · · ν

q
nq − ν

q
nq−1

) ≥ 0,

where the dependence on x is through μp and νq . A sufficient condition is
(

(1 − s pk+1)θ
p
k+1

(γ + θ
p
k+1Θ̄(x))2

− (1 − s pk )θ
p
k

(γ + θ
p
k Θ̄(x))2

)

·
(

qθ
q
l+1

γ + θ
q
l+1Θ̄(x)

− qθ
q
l

γ + θ
q
l Θ̄(x)

)

≥ 0 (17)
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for all p, q ∈ P and all k ≤ n p − 1 and l ≤ nq − 1. Since θ
p
i = λp(1 − s pi ),∀p ∈ P ,

after substitution, the first two terms in (17) have the form
λp(1−s pi )2

(γ+λp(1−s pi )Θ̄(x))2
, p ∈ P and the

last two terms have the form
λp2(1−s pi )

γ+λp(1−s pi )Θ̄(x)
, p ∈ P , which are both decreasing in s pi on

s pi ∈ [0, 1]. This proves (17). Therefore, we conclude the results. 	

A straightforward explanation of the above result is that the decisions in our evolutionary

game are strategic substitutes; i.e., when a player with degree p ∈ P changes her strategy
from s pi to s pj such that s pi < s pj , ∀i, j ∈ I p , other players, say players with degree p′, are
more likely to choose a strategy closer to s p

′
0 from the set S p′

, and vice versa. This fact is
also supported by the observations of the human behaviors under an epidemic. People tend to
stay at home when the streets become crowded. There is a higher probability to get infected
with a higher social interactivity. On the contrary, people tend to be outdoors if the others
choose to stay at home.
Global stability of NE The counterpart to a submodular game is a supermodular game [34],
where decisions of players are strategic complements. In supermodular games, increases in
strategies of other players result in a relatively higher strategy of a given player. This isotone
property of the payoff function makes the best response correspondences of players well-
behaved and the best-response dynamics with stochastic perturbation converge to perturbed
NE of the game [34]. The behavior of learning dynamics in submodular games is more
involved [20]. However, following [43] and [10], we obtain guarantees on the stability of
certain learning processes.

Consider the best-response dynamics of the form

x p
[k+1] = min{mp BRp(x[k])}, ∀p ∈ P, (18)

where the subscript [k] represents iteration k and min{·} stands for choosing the least com-
ponent. Let x p

min = (mp, 0, . . . , 0)T and x p
max = (0, . . . , 0,mp)T denote the minimal and

maximal state of population p. Let xmin = (x1min, . . . , x
P
min) and xmax = (x1max, . . . , x

P
max)

denote the minimal and maximal social state. The following result [43] characterizes the
stability of the learning process (18).

Corollary 1 There exists a minimal social state x∗
min ∈ NE(F) and a maximal social state

x∗
max ∈ NE(F). The best-response dynamics (18) generate a monotonically increasing

sequence of social states which converges to x∗
min when the initial social state is xmin; (18)

generates a monotonically decreasing sequence of social states which converges to x∗
max

when the initial social state is xmax.

The results in Corollary 1 have the following interpretations. The initialization at xmin

corresponds to the situation where players pay little attention to potential infections caused
by the epidemic. In this scenario, players are at high SAIs and interact actively over the
network. Through sequential revisions of strategies, players gradually become aware of the
potential risks from physical interactions and they become increasingly careful about their
physical interactions with others. Hence, the sequence generated by (18) starting from xmin is
increasing. The convergence to x∗

min shows that by naively best responding to current payoffs,
the population can eventually reach a point where no one has an incentive to further revise
her strategies. On the contrary, the scenario where the starting point is xmax indicates cautious
plays at the beginning, since players have no information about the potential consequences
of the epidemic. Through sequential plays, players know more about the epidemic and they
become more audacious, i.e., the subsequent social states generated by (18) after xmax are
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decreasing. And finally, there is a point where no one is willing to take more risks (e.g., going
to the supermarket without wearing a mask).

Note that the maximal and the minimal points x∗
max and x

∗
min do not, in general, correspond

to the equilibrium points where the payoffs of players reach the maximum and the minimum,
respectively [10]. Corollary 1 enables the monotone convergence to NE of the evolutionary
dynamics of the form:

ẋ p = min{mp BRp(x)} − x p, ∀p ∈ P, (19)

wheremin{·} selects the least element from a set. The evolutionary dynamics (19) is a result of
choosing Rp

i j = 1{ j=argmaxl∈I p F p
l (x)} in (3).Note that there are other choices of R

p
i j which lead

to different forms of themean dynamic (3). For example, setting Rp
i j = x p

j [F p
j (x)−F p

i (x)]+
leads to the classic replicator dynamics. The reason why (19) converges to NE lies in the
discretization of (19): x p(t + δ) = δmin{mp BRp(x(t))} + (1 − δ)x p(t), which has the
interpretation that in a small period δ, only δ portion of the population revises their strategies
to the one obtained using the best responses. The updates (18) correspond to δ = 1. Suppose
that tk and tk+1 are two time instances corresponding to iteration [k] and [k + 1] in (18).
Since starting from xmin, (18) yields x

p
[k] ≤ x p

[k+1], and for any δ ∈ (0, 1), x p(tk + δ) =
δmin{mp BRp(x(tk))} + (1 − δ)x p(tk) = δx p

[k+1] + (1 − δ)x p
[k]. Then, x

p
[k] ≤ x p(tk + δ) ≤

x p
[k+1]. If we pick δ, δ1, . . . , δend ∈ [0, 1] such that 0 < δ1 < δ2 < · · · < δend < 1, the

same relation follows: x p
[k] ≤ x p(tk + δ1) ≤ · · · ≤ x p(tk + δend) ≤ x p

[k+1]. Therefore, the
discretization of (19) is monotone between tk and tk+1 for arbitrary choices of an increasing
sequence of δ. This shows the monotonicity of (19) and its convergence to the NE from
xmin, when we let δ → 0. The scenario where the starting point is xmax follows the similar
reasoning.
Local stability of NE The concept of ESS is often considered as a refinement of NE in the
context of evolutionary games. ESS captures the local stability of a given equilibrium herd
behavior when it is invaded by different aggregate behaviors played by a small group of
players. Since we consider multiple populations, the definition of Taylor ESS [34] is one of
the suitable extensions of ESS originally considered in [36]. Consider an equilibrium herd
behavior x∗ ∈ NE(F). Then x∗ is Taylor ESS if and only if there exists a neighborhood N
of x∗ such that for all x ∈ N − {x∗}, (x − x∗)T F(x∗) = 0 implies that (x − x∗)T F(x) < 0.
This definition directly leads to the following corollary.

Corollary 2 A social state x∗ ∈ NE(F) is Taylor ESS on its neighborhood N if and only if
the following condition holds:

maxx∈NE(F)∩(N−{x∗})(x − x∗)T F(x) < 0. (20)

The condition x ∈ NE(F) is equivalent to (x − x∗)T F(x∗) = 0 and can be checked using
(12). In Corollary 2, we restrict the definition of ESS to a given neighborhoodN . The reason
lies in that the equilibrium points inN can be found by solving (12) restricted onN ⊂ X and
condition (20) can be check at these points. If we seek the existence of the neighborhoodN ,
we can check the condition (x − x∗)T F(x) < 0 for all x which is greater than the minimal
equilibrium point x∗

min and smaller than the maximal equilibrium point x∗
max.

4.5 Misinformation Broadcasting

Information plays an important role in shaping human behaviors. In the information broad-
cast, the media can control the strategies of players through the design of the information.
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In this subsection, we investigate manipulations on players’ observations of the status of the
epidemic. For simplicity reasons, we assume that the information broadcast only contains Θ̄ ,
which represents the average probability that a link on the network connects to an infected
node, at a given social state. This assumption can be understood as the total infected number
of people reported by the news. In addition, we assume that the strategy sets S p are identical
for all p ∈ P with the minimal element denoted by smin and the maximal element denoted
by smax.

Define F p : [smin, smax] → R by F p(s) = sr − (1− s)ηp
i = sr − (1− s)O p

i ( Ī pi ) for all
p ∈ P . The function F p(s) extends the payoff of players with degree p ∈ P to a continuous
function defined on the continuum [smin, smax]. This extension helps analyze the properties
of the payoff when the strategies are perturbed.

Combining (7) and (8), we obtain

F p(s) = sr − (1 − s)
λp(1 − s)Θ̄

γ + λp(1 − s)Θ̄
.

The derivative of F p is

d

ds
F p(s) = r + 2Θ̄ λp(1−s)

γ
+ Θ̄2(

λp(1−s)
γ

)2

(1 + Θ̄
λp(1−s)

γ
)2

. (21)

The existence of dominant strategies depends on the sign of d
dsF p(s). We observe that

d
dsF p(s) is a strictly increasing function of Θ̄ under the condition that

λp(1−s pi )

γ
≥ 1 for all

i ∈ I p and all p ∈ P . Therefore, the smallest value of d
dsF p(s) appears when Θ̄ approaches

0 and the largest appears when Θ̄ approaches 1. The following result presents the conditions
on the value of the relative reward r for achieving dominant strategies.

Theorem 5 Under the assumption that
λp(1−s pi )

γ
≥ 1 for all i ∈ I p and all p ∈ P , smin is

dominant for all p ∈ P if the following inequality holds:

|r | ≥ 1 − 1
(
1 + λp(1−smin)

γ

)2 , ∀p ∈ P. (22)

Proof From (21), we know that the minimal value of the second term on the right-hand side is
0 when Θ̄ = 0. In this case, d

dsF p(s) ≤ 0 since r is negative. Therefore, dominant strategies
for all players can only appear if d

dsF p(s) ≤ 0 when the second term on the right-hand side
of (21) takes the maximal value. Hence, by requiring (21) to be negative when Θ̄ = 1, we
arrive at (22). 	


According to the above result, when the relative reward r satisfies (22), a player chooses
smin no matter what she observes from the information broadcast. We regard the relative
reward satisfying the equality in (22) as the critical relative reward and denote it by rcrit .
Condition (22) is relatively demanding, since it requires the reward perceptions of all players
in the populations to go to one extreme, i.e., the reward of socially inactive is low whatever
the status of the epidemic is. However, with smin being a potential dominant strategy, the
information broadcaster can make the condition on r for enabling dominant strategies less
restrictive by taking advantage of Θ̄ . Specifically, by misreporting Θ̄ with a value Θ̃ satis-
fying 0 ≤ Θ̃ < Θ̄ in every information broadcast, the information broadcaster makes smin

dominant for all players even if |r | < |rcrit|. This shows the destructive impact of misin-
formation. Indeed, even when a player possesses a reward perception that social inactivity
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during the epidemic is acceptable, if the media consecutively underreport the epidemic, this
player would underestimate possible consequences of infection and become highly socially
active, i.e., playing strategy smin. As a consequence, few infections cause regional outbreaks
of the epidemic, and the epidemic eventually becomes a pandemic.

5 Time-Dependent Behavior

In Sect. 4, we have assumed that the epidemic dynamics evolve at a faster timescale. In
this section, we investigate our framework at a different timescale. We first present a result
analogous to that of Sect. 4.4 to make connections with the rate-τ exponential distribution
that controls the times between the information broadcasts. Then, we show that the essence
of the framework is maintained when we consider the approximate time-dependent epidemic
dynamics.

5.1 Time-Dependent Property of the Game

We emphasize the time dependence of the probability of infection using η
p
i (Δt), where Δt

denotes the time between information broadcasts. We rewrite the payoffs of players as:

F p
i = s pi r − (1 − s pi )η

p
i (Δt). (23)

The next result is the time-dependent counterpart of Theorem 4.

Theorem 6 Under the assumption that all the players have the same probability to be infected
at the beginning, i.e., I pi (0) = i0,∀i ∈ I p,∀p ∈ P , the game defined in Sect. 3.2 with payoff
functions (23) is a submodular game for any time Δt > 0 between information broadcasts.

Proof We first show that I pi (t) are ordered when I pi (0) = i0,∀i ∈ I p,∀p ∈ P . From (4),
we observe that the distinct term is λ

p
i = λ(1 − s pi ). For all i, j ∈ I p such that i > j and

s pi , s pj ∈ S p , since s pi > s pj , İ
p
i (t) is an upper bound of İ pj (t) for all p ∈ P . At an arbitrary

time t > 0, we obtain the expression

I pi (t) = I pi (0) +
∫ t

0
−γ I pi (t) + λ(1 − s pi )(1 − I pi (t))pΘ(t)dt .

Since I pi (0) = i0,∀i ∈ I p,∀p ∈ P , we conclude that I pj (t) > I pi (t) for all t > 0 and
p ∈ P if i > j using arguments in [4]. Note that the social state x only appears in the
expression of Θ(t) and Θ(t) stays the same for all s pi ∈ S p and p ∈ P . Therefore, the
relation I pj (t) > I pi (t) holds when the social state x evolves.

Next, let p and q be two populations in set P . We derive the structural properties of the

matrix DF p
q (x) := ∂F p

i
∂xqj

with the payoff (23). We focus on the time period [t, t + Δt]. The
evolution of the epidemic dynamics for population p is

I pi (t + Δt) = I pi (t) +
∫ t+Δt

t
−γ I pi (t) + λ(1 − s pi )(1 − I pi (t))pΘ(t)dt . (24)

The only term that depends on the social state in (24) is Θ(t). Hence, the derivative of the
payoff (23) with respect to the social state is

∂F p
i

∂xqj
= − λ

p̄
pq

∫ t+Δt

t
[(1 − s pi )2(1 − I pi (t))][I qj (t)]dt . (25)
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The matrix DF p
q (x) takes (25) as the element on the row corresponding to strategy s pi ∈ S p

of population p and the column corresponding to strategy sqj ∈ Sq of population q . We use
the same difference matrices Σ p andΣq in the proof of Theorem 4. Our objective is to show
that Σ pDF p

q (x)(Σq)T ≤ 0 for all p, q ∈ P . We arrive at the expression of the element in
Σ pDF p

q (x)(Σq)T on row i column j as follows:

[Σ pDF p
q (x)(Σq)T]p,qi, j = −λpq

p̄
(Υ

p,q
i+1, j+1 − Υ

p,q
i, j+1 − Υ

p,q
i+1, j + Υ

p,q
i, j ), (26)

where Υ
p,q
i, j = ∫ t+Δt

t [(1 − s pi )2(1 − I pi (t))][I qj (t)]dt . After simplification, we obtain

Υ
p,q
i+1, j+1 − Υ

p,q
i, j+1 − Υ

p,q
i+1, j + Υ

p,q
i, j

=
∫ t+Δt

t
[I qj+1(t) − I qj (t)][(1 − s pi+1)

2(1 − I pi+1(t)) − (1 − s pi )2(1 − I pi (t))]dt .
(27)

Then, it suffices to prove that (27) is nonnegative.
A sufficient condition for (27) to be nonnegative is that the integrand in (27) is nonnegative

on the interval [t, t + Δt]. We have shown that I pj (t) > I pi (t) when i > j for all p ∈ P .

Hence, it suffices to show that [(1− s pi+1)
2(1− I pi+1(t))− (1− s pi )2(1− I pi (t))] is negative.

Note that by rearranging the differential equation (4), for any population p ∈ P , we arrive
at

İ pi (t) + γ I pi (t)

λpΘ(t)
= (1 − s pi )(1 − I pi (t)). (28)

Multiplying 1 − s pi on both sides of (28), we obtain

İ pi (t) + γ I pi (t)

λpΘ(t)
(1 − s pi ) = (1 − s pi )2(1 − I pi (t)). (29)

By (29), it suffices to prove that the left-hand side of (29) is decreasing with respect to i .
We have shown that İ pj (t) upper bounds İ pi (t) and I pj (t) > I pi (t) if i > j . In addition, the
strategies in the set S p follow an increasing order. Therefore, we conclude that the left-hand
side of (29) decreases as i increases. This completes the proof. 	


We remark that in the proof of Theorem 6, the time Δt is arbitrary. This suggests the
possibility of different time intervals between two information broadcasts. Hence, we can
assume that the times between the information broadcasts are independent and follow a rate
τ exponential distribution, which is consistent with the settings described in Sect. 3.

With Theorem 6, the convergence result in Corollary 1 can be extended to the setting
where the epidemic evolves for an arbitrary time between any two information broadcasts.
Indeed, after the learning procedure defined in (18) does not result in new social states given
additional information broadcasts, the epidemicwill gradually converge to the unique positive
steady state associated with the current social state as t → ∞. This leads to Nash equilibria
defined in Definition 1.

5.2 Equivalent Networks and Approximations

In general, the time-dependent behaviors depend on the solution of a system of nonlinear
differential equations. Here, we study it using approximations.
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Combining (4) and (5), we obtain

İ pi (t) = −γ I pi (t) + λp(1 − s pi )
[
1 − I pi (t)

]
∑

p∈P
∑

i∈I p px p
i I

p
i (t)

∑
p∈P pmp

= −γ I pi (t) + λ
[
1 − I pi (t)

] p(1 − s pi )
∑

p∈P
∑

i∈I p px p
i I

p
i (t)

p̄

= −γ I pi (t) + λ
[
1 − I pi (t)

] ∑

p′∈P,i ′∈I p′
Ã(p,i),(p′,i ′) I

p′
i ′ (t),

(30)

where Ã(p,i),(p′,i ′) = p(1−s pi )p′x p′
i ′

p̄ denotes an entry in the matrix Ã ∈ R
n×n , with (p, i)

representing the row index and (p′, i ′) representing the column index. We use a pair (p, i)
to represent an index to emphasize that this index is associated with population p ∈ P and
strategy s pi ∈ S p , i ∈ I p . The matrix Ã acts as an equivalent adjacency matrix if we regard
our epidemic dynamics as a dynamical system on a small network with n nodes. The entry
Ã(p,i),(p′,i ′) stands for the weight on the link from node (p, i) to node (p′, i ′). In general,
matrix Ã is asymmetric, indicating that the equivalent network is directed. Since we have
interpreted the population game as a P-player game in Sect. 4.3, the interactions among the
P players can be captured by the small network.

To analyze the time-dependent behavior of the epidemics, we ignore the quadratic terms
in the equivalent dynamics and arrive at:

İ pi (t) � −γ I pi (t) + λ
∑

p′∈P,i ′∈I p′
Ã(p,i),(p′,i ′) I

p′
i ′ (t).

Combining the two terms and rewriting it in matrix form, we obtain

İ (t) � λAI (t), (31)

where A = Ã − γ
λ
Λ ∈ R

n×n and Λ represents the identity matrix. Let vk and κk denote the
kth eigenvector and eigenvalue ofmatrix A. Then, we can express I (t) as a linear combination
of the eigenvectors as

I (t) �
n∑

k=1

αk(t)vk,

where αk(t) is a time-dependent parameter associated with vk . To solve for αk(t), we use the
following equation:

n∑

k=1

α̇k(t)vk = İ (t) = λAI (t) = λA
n∑

k=1

αk(t)vk = λ

n∑

k=1

κkαk(t)vk .

Hence,

α̇k(t) = λκkαk(t). (32)

The differential equation (32) has solutions αk(t) = αk(0)eλκk t . Therefore, we obtain the
time-dependent behavior of the epidemic:

I (t) �
n∑

k=1

αk(0)e
λκk tvk . (33)
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The exponential term determines the growth speed of I (t). Hence, the largest eigenvalue κ1
corresponds to the fastest evolution component.

In general, (33) can be approximated using I (t) � α1(0)eλκ1tv1 by assuming that the
largest eigenvalue is significantly greater than the second largest eigenvalue. In our case, we
can leverage the structural properties of matrix Ã to justify the approximation given by

I (t) � α1(0)e
λκ1tv1. (34)

From the definition of Ã(p,i),(p′,i ′), we obtain

Ã = 1

p̄

⎛

⎜
⎝

1 · (1 − s11 )
...

D(1 − sP
nP

)

⎞

⎟
⎠ · (

1 · x11 · · · Px P
nP

)
.

This shows that matrix Ã has rank 1. Furthermore, Ã has a nonnegative eigenvalue
κ̃1 = p̄−1 ∑

p∈P
∑

i∈I p p2(1 − s pi )x p
i of order 1 associated with the eigenvector ṽ1 =

(
1 · (1 − s11 ) · · · P(1 − sP

nP
)
)T
, and an eigenvalue 0 of order n−1 associated with the eigen-

vectors ṽk ∈ Null( Ã) if k �= 1. Since A = Ã − γ
λ
Λ, we arrive at κ1 = κ̃1 − γ

λ
associated

with v1 = ṽ1, and κk = − γ
λ
associated with vk = ṽk if k �= 1. Consider the conditions

λp(1−s pi )

γ
≥ 1,∀i ∈ I p,∀p ∈ P which we have assumed in Theorem 1 to obtain the pos-

itive steady state. Then, we obtain κ̃1 ≥ p̄−1 γ
λ

∑
p∈P

∑
i∈I p px p

i = γ
λ
. Hence, κ1 ≥ 0.

This shows that the largest eigenvalue is nonnegative when
λp(1−s pi )

γ
≥ 1. In addition, we

know that κk = − γ
λ

< 0 for all k �= 1. Therefore, the initial values αk(0) in (33) decays
exponentially in time if k �= 1. This justifies the approximation (34).

Some of the properties of our framework introduced in the previous sections depends on
the submodularity of the game. The approximation (34) does not break this structural feature.
Consider the derivative of the payoff for two populations p, q ∈ P under the approximation
(34):

∂

∂xqj
F p
i (x, t) = −α1(0)λte

λκ1t p(1 − sdi )2q2(1 − scj ). (35)

In (35), both p(1 − s pi )2 and q2(1 − sqj ) are decreasing in s pi ∈ [0, 1] and sqj ∈ [0, 1],
respectively. Hence, we can show that the inequality Σ pDF p

q (x)(Σq)T ≤ 0 holds when
DF p

q (x) is based on (35). Therefore, after the approximation, players’ decisions remain
strategic substitutes. This shows the structure-preserving property of the approximation (34).
As a result, simulations of the real epidemics can be done using our framework with (34)
instead of the original epidemic dynamics over complex networks. In Sect. 6.1, we provide
numerical results supporting the applicability of (34).

6 Numerical Experiments

In this section, we present the experiment results to corroborate the previous analysis and
the effectiveness of our model. To make the presentation more clear, we set the number of
populations P = 2 and set the number of strategies n1 = 3 and n2 = 2. We choose a
scale-free network [30] where the degree distribution [mp]p∈P follows a power law. The
strategy spaces for each population are set as S1 = {0.1, 0.3, 0.5} and S2 = {0.3, 0.6}. To
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(a) Using best-response dynamics (18). (b) Solving the optimization problem (12).

(c) Best response dynamics (18) for 50
populations.

(d) Optimization (12) for 50 populations.

Fig. 3 Convergence to the NE using different approaches

avoid trivial cases where dominant strategies and the zero steady state exist, we select the
relative reward r = −0.1. We set γ

λ
= 0.4 to simulate an epidemic of high infectiousness.

We also normalize the timescale for information broadcast to 1 in the experiment. To sim-
ulate the continuous best response dynamics (19), we take δ = 0.5 for discretization. Note
that our framework is effective for modeling variants of infectious diseases by changing the
parameter γ

λ
, which is the reciprocal of the basic reproduction rate of a given virus. With

the knowledge of p, s pi and γ
λ
, we can calculate the activity-aware basic reproduction rate

defined by
λp(1−s pi )

γ
.

6.1 Convergence to Nash Equilibrium

In Fig. 3a, b, the best-response dynamics (18) and the iterations of the optimization problem
(12) converge to the same NE. From the evolution of the social state, we observe that the
best-response dynamics provide a smoother learning process where populations gradually
learn the equilibrium strategies through sequential strategic interactions. This is due to the
monotonicity of the updates of the social states in (18) under the submodular property of
the game. The learning process provided by the optimization problem (12) is not as well-
shaped as the one given by the best-response dynamics. However, the optimization problem
provides a different learning approach containing a global objective for all players, differing
frommerely considering individual player’s myopic reactions toward the payoff realizations.
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(a) Information broadcasts take place at
the steady states of the epidemic dynam-
ics.

(b) Information broadcasts take place be-
fore the epidemic dynamics reach the
steady states under the linearly approxi-
mated epidemic model.

Fig. 4 Study of the convergences of best-response dynamics under different scenarios

(a) Information broadcasts take place be-
fore the epidemic dynamics reach the
steady states.

(b) Delaying the information broadcasts.

Fig. 5 Effect of delaying the information broadcasts

We interpret the optimization of the problem (12) as an objective-guided evolutionary process
describing strategy revisions in the population, with the explicit gradients (14) acting as the
incentives of the players in revising their strategies. We also experiment the best-response
dynamics (18) and the iterations of the optimization problem (12) for 50 populations in total
and observe the convergence. In each population, players have three strategies. We observed
from Fig. 3c, d that the two approaches converge to the same NE.

Next, we demonstrate the convergence results using the linear approximation method
from Sect. 5. In Fig. 4, we compare the convergence of the best-response dynamics when
information broadcasts take place at the steady states of the epidemic dynamics and when
information broadcasts take place before the epidemic dynamics reach the steady states.
Interestingly, in Fig. 4a, b, the evolution of the social state converges to the same NE, despite
the different evolution patterns at the beginning. This result corroborates the approximation
methods we have discussed in Sect. 5.2.

We also study the impact of delayed information broadcast to our model. The delays
are common in practice. For example, the published infectious data by the authority can
be obsoleted for one day or two and cannot reflect the current real situation. Such delay
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(a) Statistics of COVID-19 in New York [45].

(b) Predicted new infected density curve using our framework.

Fig. 6 Multiple peaks of new infections

may lead to different strategies for fighting against the epidemic. In Fig. 5, we compare the
evolutionary processes with and without delays in the information broadcasts. As shown
in Fig. 5, the delays in the information broadcasts significantly influence the evolution of
the behaviors. The curve corresponding to p = 1 and s12 is smoother in Fig. 5a than in b.
However, both the processes in Fig. 5a, b converge to the same equilibrium point. Delays in
information broadcasts often arise from either the delays in data collection and processing
or purposeful deferral of the broadcast. The results suggest that even if the broadcaster has
difficulty in obtaining the epidemic status in real time, the out-of-date information can still
lead the herd to reach the equilibrium, as long as the reported information is chronological and
precise. Therefore, our framework has the potential to guide real-world policy developing,
since neither information reporting nor behavioral revision of the herd is perfectly on time.

6.2 InfectionWaves Due to Strategy Changes

In Fig. 6, we compare the curve of the reported cases using the real COVID-19 data in
New York and the simulated curve of the new infected density using our framework. The
multi-peak curve in Fig. 6a shows the 7-day average statistics of new reported cases in
New York fromMarch 2020 to March 2021 [42]. The first outbreak corresponds to the initial
spreading of the epidemic. The decrease in new cases between July 2020 andNovember 2020
corresponds to the period when people start to avoid close contacts and social policies are
enforced to mitigate the epidemic, such as wearing masks all the time. The second infection
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(a) Fully connected initial network. (b) Core-peripheral equilibrium network.

Fig. 7 Equivalent small networks: the networks are directed graphs. Each link is associated with weights

peak is a consequence of a relaxed social guidance policy [32] and the violations of existing
quarantine policies. In Fig. 6b, the prediction of the density of the new infected admits a
similar two-peak pattern. The first peak represents the natural evolution of the epidemic
when it first appears among populations. At time t = 50, the strategy of each population
is changed, corresponding to the change of policies in Fig. 6a. This change captures the
populations’ overconfidence on the epidemic status as the number of new cases decreases.
When the populations become less careful, i.e., more people play strategies close to s p1 in
the set S p , p ∈ P , the new infected density curve increases and shows a second peak. This
second peak is an indication of the influence of the herd behaviors on the epidemic evolution.
The new infected density then goes down because the overall infected density has already
reached a high level, which decreases the infectious rate. Note that the parameters chosen
in the experiments guarantee that the steady state of the epidemic dynamics is positive. This
means that though the new infected density in Fig. 6b approaches 0 when the evolution time
approaches 120, the total infected density can be significantly large depending on the degree

distribution of the network [mp]p∈P and the activity-aware basic reproduction rates
λp(1−s pi )

γ
.

The comparison in Fig. 6 shows the potential of our framework in assessing risks of
real-world infectious diseases.

6.3 Equivalent Networks

Figure 7 illustrates the equivalent small networks discussed in Sect. 5.2. From the randomized
initial network in Fig. 7a, we eventually arrive at the equilibrium network in Fig. 7b, which
has a special structure, where a few nodes are in the center with others being peripheral nodes.
This pattern is often called a core–peripheral structure [13]. In Fig. 7b, the nodes s13 and s22
act as the cores, since all the other nodes have a link pointing toward them but they only have
links pointing toward each other. Core–peripheral networks are consequences of network
formation games where the directed links represent resource flows [13]. This observation
suggests that the evolution of populations’ strategies can be statistically equivalent to an
N -person sequential network formation game. Each player represents a population in which
the individuals are indistinguishable and choose the same strategy.

7 Conclusion

In this paper, we have proposed an evolutionary game framework that couples the state
dynamics of the epidemics with the evolution of strategies to study the herd behaviors of the
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population over complex networks. We have designed the mechanism containing physical
interactions and information broadcasts to combine coupled state transitions over a complex
network and sequential strategy revisions in the populations. Taking the epidemic model as
a particular case, we have found a unique nontrivial steady state when the evolution of the
epidemic evolves at a faster timescale.

We have characterized the Nash equilibrium of the game at the steady state and have
explicitly expressed its gradient that facilitates numerical computations and the analysis of
structural properties of the game. In addition, we have shown that decisions in the game are
strategic substitutes under arbitrary timescales. This observation has enabled simple learning
processes to reach the equilibrium point. We have constructed an equivalent small network to
represent the complex network and proposed a structure-preserving approximation method
that canmaintain the strategic substitutes property of the game.Having applied our framework
to study the impact of misinformation on epidemics, we have shown that misreports lead to
a high social activity intensity, which can exacerbate the spreading of the infectious disease.
Our numerical examples have indicated the predictive power of our framework by comparing
the simulated dynamics to the real COVID-19 statistics. The multi-peak pattern observed in
the case study has shown that the herd behaviors have contributed to multiple outbreaks of
an epidemic.

As for future work, wewould like to study the stability of the coupled dynamical system in
a direct way.We have leveraged the structural property of the game to aid the discussion of the
strategy revisions in this work. However, the NE may also be found by directly studying the
behavior of the coupled dynamical system in a similar way as in Sect. 4.1 withmore advanced
mathematical tools. We have adopted the SIS model as a special case in our framework. We
would also extend our discussions to other compartmentalmodels to cover infectious diseases
of various types. Investigating the role of the information in those models would also be an
interesting extension. In addition, the numerical experiments on the delays in the information
broadcasts suggest an extension of our framework to scenarios where the populations react
to the underlying dynamics with a delay.

Proof of Theorem 1

Proof Suppose that
λp(1−s pi )

γ
< 1 for all i ∈ I p and for all p ∈ P . Since 1 − I pi (t) ≤ 1, we

obtain from (4) that: d
dt I

p
i (t) ≤ −γ I pi (t) + λ(1− s pi )pΘ(t). Then, it suffices to discuss the

stability of the system

d

dt
I (t) =

⎛

⎜
⎝

−γ I 11 (t)
...

−γ I P
nP

(t)

⎞

⎟
⎠ + λ

⎛

⎜
⎝

1 · (1 − s11 )
...

P · (1 − sP
nP

)

⎞

⎟
⎠ Θ(t).

Consider the Lyapunov function V (t) = ∑
p∈P

∑
i∈I p b

p
i I

p
i (t), where bp

i = px p
i

γ
≥ 0. The

time derivative of the Lyapunov function is:

d

dt
V (t) = −

∑

p∈P

∑

i∈I p

px p
i I

p
i (t) +

∑

p∈P

∑

i∈I p

px p
i λ(1 − s pi )pΘ(t)

γ

= −Θ(t)
∑

p∈P
pmp + Θ(t)

∑

p∈P

∑

i∈I p

p2x p
i λ(1 − s pi )

γ
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= Θ(t)
∑

p∈P

[

−pmp + p2λ

γ

∑

i∈I p

x p
i (1 − s pi )

]

.

Combining the assumption that
λp(1−s pi )

γ
< 1 and the condition that

∑
i∈I p x

p
i = mp , we

conclude that d
dt V (t) < 0 when Θ(t) �= 0. This result shows that the system d

dt I
p
i (t) =

−γ I pi (t) + λ(1− s pi )pΘ(t) converges to 0 as t → ∞. Therefore, the system (4) is globally
asymptotically stable at the zero steady state.

Suppose that the opposite condition holds, i.e.,
λp(1−s pi )

γ
≥ 1 for all i ∈ I p and for

all p ∈ P . We drop the dependence on x of the positive steady-state pair for simplicity.
We first show that a solution Θ̄+ ∈ (0, 1] exists for (10). Define Ψ : [0, 1] → R as:

Ψ (z) = ∑
p∈P

[

p
∑

i∈I p
x p
i θ

p
i

γ+θ
p
i z

]

. Since Ψ (z) is a strictly decreasing function of z, Ψ (0)

achieves the maximum value and Ψ (1) achieves the minimum value of Ψ (·). Under the
condition

λp(1−s pi )

γ
≥ 1, we obtain the inequality

θ
p
i

γ
≥ 1 ≥ θ

p
i

γ + θ
p
i

.

Multiplying by px p
i and taking the summation over all i ∈ I p and all p ∈ P , we arrive at

∑

p∈P

[

p
∑

i∈I p

x p
i θ

p
i

γ

]

≥
∑

p∈P
pmp ≥

∑

p∈P

[

p
∑

i∈I p

x p
i θ

p
i

γ + θ
p
i

]

,

which is equivalent to Ψ (0) ≥ p̄ ≥ Ψ (1). Hence, there exists Θ̄+ ∈ (0, 1] such that
Ψ (Θ̄+) = p̄.Moreover, Θ̄+ is unique becauseΨ (·) ismonotone. Accordingly, every element
of Ī+ is positive. Now, we proceed to study the stability of the positive steady-state pair

( Ī+, Θ̄+). Define φ
p
i = λ(1−s pi )

γ
. Consider the following equivalent system of (4):

d

dt
I pi (t) = −I pi (t) + φ

p
i p(1 − I pi (t))Θ(t).

Let the density of the susceptible be U p
i (t) = 1 − I pi (t), (5) can be rewritten as

d

dt
Θ(t) = p̄−1

∑

p∈P

∑

i∈I p

px p
i
d

dt
I pi (t)

= p̄−1
∑

p∈P

∑

i∈I p

px p
i

[−I pi (t) + φ
p
i pU

p
i (t)Θ(t)

]

= Θ(t)

⎡

⎣ p̄−1
∑

p∈P

∑

i∈I p

φ
p
i U

p
i (t)p2x p

i − 1

⎤

⎦ .

Consider the following Lyapunov function for the equivalent dynamical systems above:
V (t) = 1

2

∑
p∈P

∑
i∈I p

[
bp
i (U p

i (t) − Ū p
i )2

]+Θ(t)− Θ̄ − Θ̄lnΘ(t)
Θ̄

, where the parameters

bp
i are defined as bp

i = px p
i

p̄Ū p
i
, and the term Ū p

i denotes the steady-state quantity of U p
i (t).

The time derivative of V (t) is
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d

dt
V (t) =

∑

p∈P

∑

i∈I p

bp
i (U p

i (t) − Ū p
i )

dU p
i (t)

dt
+ Θ(t) − Θ̄

Θ(t)
· dΘ(t)

dt

=
∑

p∈P

∑

i∈I p

bp
i (U p

i (t) − Ū p
i )(I pi (t) − φ

p
i pU

p
i (t)Θ(t))

+ (Θ(t) − Θ̄)

[∑
p∈P

∑
i∈I p φ

p
i U

p
i (t)p2x p

i

p̄
− 1

]

.

Since Ū p
i = 1 − Ī pi and p̄−1 ∑

p∈P
∑

i∈I p p2x p
i φ

p
i Ū

p
i = 1, we obtain

d

dt
V (t) =

∑

p∈P

∑

i∈I p

bp
i (U p

i (t) − Ū p
i )

[
(I pi (t) − Ī pi ) − φ

p
i p(U

p
i (t) − Ū p

i )
]

+ (Θ(t) − Θ̄)

⎡

⎣ p̄−1
∑

p∈P

∑

i∈I p

φ
p
i p

2x p
i (U p

i (t) − Ū p
i )

⎤

⎦

=
∑

p∈P

∑

i∈I p

bp
i

[
(U p

i (t) − Ū p
i )(I pi (t) − Ī pi )

]

+ p̄−1
∑

p∈P

∑

i∈I p

φ
p
i p

2x p
i

Ū p
i

(U p
i (t) − Ū p

i )
[
U p
i (t)Θ(t) − Ū p

i Θ̄
]

+ p̄−1
∑

p∈P

∑

i∈I p

φ
p
i p

2x p
i

[
(Θ(t) − Θ̄)(U p

i (t) − Ū p
i )

]

= −
∑

p∈P

∑

i∈I p

bp
i (U p

i (t) − Ū p
i )2

− p̄−1
∑

p∈P

∑

i∈I p

φ
p
i p

2x p
i Θ(t)

[
(U p

i (t))2

Ū p
i

− 2U p
i (t) + Ū p

i

]

.

Since∀U p
i (t) ∈ [0, 1], (U p

i (t))2

Ū p
i

−2U p
i (t)+Ū p

i ≥ 0,we conclude that d
dt V (t) ≤ 0. Therefore,

the positive steady-state pair ( Ī+, Θ̄+) is globally asymptotically stable. 	


Proof of Theorem 2

Proof Consider the component
x p
i θ

p
i z

γ+x p
i θ

p
i z
. For arbitrary z1, z2 ∈ [0, 1], the following holds:

∣
∣
∣
∣
∣

x p
i θ

p
i z1

γ + x p
i θ

p
i z1

− x p
i θ

p
i z2

γ + x p
i θ

p
i z2

∣
∣
∣
∣
∣

= x p
i θ

p
i

∣
∣
∣
∣
∣

γ (z1 − z2)

(γ + x p
i θ

p
i z1)(γ + x p

i θ
p
i z2)

∣
∣
∣
∣
∣

= x p
i θ

p
i β

p
i |z1 − z2| ,
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where β
p
i = 1

(1+γ −1x p
i θ

p
i z1)(1+γ −1x p

i θ
p
i z2)

< 1. Then, summing all components, we obtain

|M(z1) − M(z2)| = |z1 − z2|
p̄

⎛

⎝
∑

p∈P

∑

i∈I p

px p
i θ

p
i β

p
i

⎞

⎠ .

Since p̄ = ∑
p∈P pmp , mp = ∑

i∈I p x
p
i , θ

p
i ∈ [0, 1], and β

p
i ∈ (0, 1), we conclude that

p̄−1(
∑

p∈P
∑

i∈I p px p
i θ

p
i β

p
i ) ∈ (0, 1). Therefore, M(·) is a contraction mapping on [0, 1].

	


Proof of Theorem 3

Proof The constraint −F p(x) ≥ −y p1n p leads to

−EF p(x) = −(x p)TF p(x) ≥ −(x p)Ty p1n p ≥ −y pm p.

This implies that the objective function is nonnegative, i.e.,
∑

p∈P
−EF p(x) +

∑

p∈P
y pm p ≥ 0.

Suppose that x∗ = (x1∗, ..., x P∗) is an NE of the population game. Define y∗ =
(y1∗, ..., yP∗) by y p∗ = (mp)−1EF p(x p∗, x−p∗) for all p ∈ P . We prove that the
pair (x∗, y∗) is an optimal solution to problem (12) by showing that it is feasible and∑

p∈P −EF p(x∗) + ∑
p∈P y p∗mp = 0. To prove the feasibility of (x∗, y∗), it suffices

to prove −F p(x∗) ≥ −y p∗1n p for all p ∈ P . Since

y p∗ = (mp)−1(x p∗)TF p(x p∗, x−p∗),

we obtain

−y p∗1n p = −(mp)−1(x p∗)TF p(x p∗, x−p∗)1n p .

Then, it suffices to prove

− (x p∗)TF p(x p∗, x−p∗)1n p ≤ −mp

⎛

⎜
⎝

(ep1 )TF p(x p∗, x−p∗)
...

(epn p )
TF p(x p∗, x−p∗)

⎞

⎟
⎠ , (36)

where epi ∈ R
n p

is the vector of all zeros except for a 1 at the i th entry for population
p ∈ P . From Definition 1, we know that if x p∗

i > 0, s pi ∈ argmax j∈I p F p
j (x∗). This shows

that for all i ∈ I p such that x p∗
i > 0, the values of F p

i (x p∗, x−p∗) are all equivalent to
max j∈I p F p

j (x∗). Then, for all i such that x p∗
i > 0, since 1Tx p∗ = mp , equality holds in the

i th row of (36). For j ∈ I p such that x p∗
j = 0, inequality holds in the j th row of (36) since

F p
j (x∗) ≤ argmaxi∈I p F p

i (x∗). Hence, the pair (x∗, y∗) is feasible. From the definition of
y∗, we conclude that the objective function is zero under (x∗, y∗). Therefore, (x∗, y∗) solves
(12).

Suppose that x̃ = (x̃1, ..., x̃ P ) and ỹ = (ỹ1, ..., ỹ P ) solve (12). Since we have found the
pair (x∗, y∗) under which the objective value is zero, the objective value must be zero under
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the pair (x̃, ỹ), i.e.,
∑

p∈P −EF p(x̃ p, x̃−p) + ∑
p∈P ỹ pm p = 0. For all x such that x ≥ 0

and 1Tx p = mp,∀p ∈ P , −(x p)TF p(x̃) ≥ −ỹ pm p holds. This leads to
∑

p∈P
−(x p)TF p(x̃) ≥

∑

p∈P
−ỹ pm p =

∑

p∈P
−EF p(x̃ p, x̃−p)

=
∑

p∈P
−(x̃ p)TF p(x̃).

Since ∀p ∈ P , −(x̃ p)TF p(x̃) ≥ −ỹ pm p holds. Hence, ∀p ∈ P , −(x̃ p)TF p(x̃) = −ỹ pm p .
Therefore, ∀p ∈ P and ∀x p feasible, we obtain

− (x̃ p)TF p(x̃) ≤ −(x p)TF p(x̃). (37)

Setting x p = mpep1 , x
p = mpep2 , up to x p = mpepn p in (37), we arrive at

(x̃ p)TF p(x̃) ≥ (
maxi∈I p F p

i (x̃)
)
mp. (38)

Since x̃ ≥ 0 and 1T x̃ p = mp , equality holds in (38). Thus, we conclude that for i ∈ I p such
that x̃ p

i > 0, i ∈ argmaxi∈I p F p
i (x̃). Therefore, x̃ is an NE of the population game, which

completes the proof. 	
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