Skip to main content

Advertisement

Log in

On a Constrained Infinite-Time Horizon Linear Quadratic Game

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

A linear quadratic differential game on an infinite-time horizon is studied in the case when the controls of the minimizing player are subject to constraints. A sufficient condition for a saddle point equilibrium is provided based on the conversion of the infinite-time horizon game to a game on a finite-time horizon. The method is applied to a simple monetary policy model as an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Differential games with orthogonal instantaneous reaction functions are such that the first derivatives of the cost functions and dynamic equations with respect to the controls of each player do not depend on the controls of the other player (Rubio [16], Def. 2.4).

  2. Werning’s original model does not include the control in the loss function, but other authors do, motivating this choice by the preference of central banks to adjust interest rates gradually [19].

  3. While a natural rate of 5 percent may be high for advanced countries, this is a plausible value for a less developed economy. Also, recent experience suggests that the zero lower bound is not as strict as previously perceived.

References

  1. Başar T, Bernhard P (1995) \(H^{\infty }\)- optimal control and related minimax design problems: a dynamic game approach, Birkhäuser

  2. Başar T, Olsder GJ (1999) Dynamic noncooperative game theory, SIAM

  3. Borzi A, Campana FC (2021) On the SQH method for solving differential nash games, J Dyn Control Syst

  4. Cochrane J (2013) The New Keynsian Liquidity Trap, NBER Working Paper 19476, Cambridge, MA

  5. Dennis J, Leitemo K, Soderstrom U (2009) Methods for robust control. J Econ Dyn Control 33:1604–1616

    Article  MathSciNet  MATH  Google Scholar 

  6. Dockner E, Jorgensen S, Van Long N, Sorger G (2000) Differential games in economics and management science. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Engwerda J (2005) LQ dynamic optimization and differential games. John Wiley and Sons Ltd, New Jersey

    Google Scholar 

  8. Engwerda J (2022) Min-max robust control in LQ-differential games. Dyn Games Appl. https://doi.org/10.1007/s13235-021-00421-z

  9. Giannoni M (2007) Robust optimal monetary policy in a forward-looking model with parameter and shock uncertainty. J Appl Econom 22:179–213

    Article  MathSciNet  Google Scholar 

  10. Goebel R, Subbotin M (2007) Continuous time linear quadratic regulator with control constraints via convex duality. IEEE Trans Autom Control 52(5):886–892

  11. Hansen L, Sargent T (2008) Robustness. Princeton University Press, Princeton

    MATH  Google Scholar 

  12. Ivanov GE (1997) Saddle point for differential games with strongly convex-concave integrand. Math Notes 62(5):607–622

    Article  MathSciNet  MATH  Google Scholar 

  13. Krylov IA, Chernousko FL (1962) On the method of successive approximations for solution of optimal control problems. J Comp Math Math Phys 2(6):1132–1139 ((in Russian))

    Google Scholar 

  14. Lyubushin AA (1982) Modifications of the method of successive approximations for solving optimal control problems. J Comp Math Math Phys 22(1):29–34 ((in Russian))

    Article  MathSciNet  MATH  Google Scholar 

  15. Onatski A, Williams N (2003) Modeling model uncertainty. J Eur Econ Assoc 1:1087–1122

    Article  Google Scholar 

  16. Rubio S (2006) On coincidence of feedback nash equilibria and stackelberg equilibria in economic applications of differential games. J Optim Theory Appl 128(1):203–221

    Article  MathSciNet  MATH  Google Scholar 

  17. Werning I (2012) Managing a liquidity trap: monetary and fiscal policy, MIT Working Paper, Cambridge

  18. Williams RJ (1980) Sufficient conditions for nash equilibria in N-person games over reflexive banach spaces. J Optim Theory Appl 30(3):383–394

    Article  MathSciNet  MATH  Google Scholar 

  19. Woodford M (2003) Optimal interest-rate smoothing. Rev Econ Stud 70:861–886

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and two anonymous referees whose valuable comments and suggestions, including the question posed in Remark 1, significantly helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossen Rozenov.

Ethics declarations

Conflict of interest

No datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.I. Krastanov: This work has been partially supported by Sofia University “St. Kliment Ohridski” under contract No. 80-10-180/27.05.2022 and by the Bulgarian Ministry of Science and Higher Education National Fund for Science Research under contract KP-06-H22-4/04.12.2018.

B.K. Stefanov: This work has been partially supported by the Center of Excellence in Informatics and ICT, Grant No. BG05M2OP001-1.001-0003 (financed by the Science and Education for Smart Growth Operational Program (2014–2020) and co-financed by the European Union through the European structural and investment funds).

Appendix

Appendix

Proof

For simplicity, we present the proof for \(t_0= 0\). The case \(t_0>0\) can be considered in the same way. We set \(\Vert z\Vert _\Theta ^2:= z^\top \Theta z \), where \(z^\top \) is the transpose of the vector z and \(\Theta \) is an arbitrary symmetric positive definite square matrix of suitable dimension. Because \(\int _{0}^\infty \Vert w(t)\Vert ^2 dt < \infty \) and the matrices

$$\begin{aligned} A, A - B R^{-1}B^\top P,~ A + E S^{-1} E^\top P, ~A - B R^{-1}B^\top P + E S^{-1} E^\top P \end{aligned}$$

are asymptotically stable, we have that \(x_{u,w}(t)\rightarrow 0\), \(x_{{\bar{u}},w}(t)\rightarrow 0\), \(x_{u, {\bar{w}}}(t) \rightarrow 0 \) and \(x_{{\bar{u}}, {\bar{w}}}(t) \rightarrow 0\) as \(t \rightarrow \infty \). We consider the case of open-loop controls and present the proof in full detail. (The cases, where one or two closed-loop controls are used, are simpler and can be studied in the same way.) Let \(u \in \mathcal U\) and \(w\in \mathcal W\) be arbitrary admissible open-loop controls, and let \(x_{u,w}(T)\), \(T >0\), be the corresponding trajectory. Then for each \(\tau \in (0, T)\), we have that

$$\begin{aligned}{} & {} x_{u,v}(T)=e^{AT}x_0 +\int _0^T e^{A(T-s)}\left( Bu(s) +Ew(s)\right) ds \\{} & {} =e^{AT}x_0 +\int _0^\tau e^{A(T-s)}\left( Bu(s) +Ew(s)\right) ds +\int _\tau ^T e^{A(T-s)}\left( Bu(s) +Ew(s)\right) ds. \end{aligned}$$

Because the eigenvalues of the matrix A have negative real parts, there exist a constant \(c>0\) and a real number \(\alpha >0\) such that \(\left\| e^{At}\right\| \le c e^{-\alpha t}\) for each \(t\ge 0\). Hence,

Applying the H\(\ddot{\text{ o }}\)lder inequality, one can check that

and then to obtain the following two estimates:

$$\begin{aligned}{} & {} \left( \int _0 ^\tau \left\| e^{A(T-s)} \right\| ^2 \left\| B\right\| ^2 ds\right) ^{1/2} \left( \int _0 ^\tau \Vert u(s)\Vert ^2 ds\right) ^{1/2} \\{} & {} \quad \le \left\| B\right\| \left( \int _0 ^\tau c^2 e^{-2\alpha (T-s)} ds \right) ^{1/2} \Vert u\Vert _{L^2} \\{} & {} \quad =c \left\| B\right\| \left( \frac{e^{-2\alpha (T-\tau )}-e^{-2\alpha T} }{2\alpha }\right) ^{1/2} \Vert u\Vert _{L^2} \\{} & {} \quad \le c \left\| B\right\| \left( \frac{e^{-2\alpha (T-\tau )} }{2\alpha }\right) ^{1/2} \Vert u\Vert _{L^2} \end{aligned}$$

and

$$\begin{aligned}{} & {} \left( \int _0 ^\tau \left\| e^{A(T-s)} \right\| ^2 \left\| E\right\| ^2 ds\right) ^{1/2} \left( \int _0 ^\tau \Vert w(s)\Vert ^2 ds\right) ^{1/2} \\{} & {} \quad \le \left\| E\right\| \left( \int _0 ^\tau c^2 e^{-2\alpha (T-s)} ds \right) ^{1/2} \Vert w\Vert _{L^2} \\{} & {} \quad =c \left\| E\right\| \left( \frac{e^{-2\alpha (T-\tau )}-e^{-2\alpha T} }{2\alpha }\right) ^{1/2} \Vert w\Vert _{L^2} \\ {}{} & {} \quad \le c \left\| E\right\| \left( \frac{e^{-2\alpha (T-\tau )} }{2\alpha }\right) ^{1/2} \Vert w\Vert _{L^2}. \end{aligned}$$

Hence,

$$\begin{aligned} \int _0 ^\tau \left\| e^{A(T-s)}\Big ( Bu(s) + Ew(s)\Big )\right\| ds \le \frac{c}{\sqrt{2\alpha }} \Big (\left\| B\right\| \Vert u\Vert _{L^2} + \left\| E\right\| \Vert w\Vert _{L^2}\Big ) e^{- \alpha (T-\tau )}. \end{aligned}$$

Similarly, the following estimates holds true:

$$\begin{aligned}{} & {} \int _ \tau ^T \left\| e^{A(T-s)}\left( Bu(s) +Ew(s)\right) \right\| ds \\{} & {} \quad \le \left( \int _ \tau ^T \left\| e^{A(T-s)} \right\| ^2\left\| B\right\| ^2 ds\right) ^{1/2} \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \qquad + \left( \int _ \tau ^T \left\| e^{A(T-s)} \right\| ^2\left\| E\right\| ^2 ds\right) ^{1/2} \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \quad \le \left( \int _ \tau ^T c^2 e^{-2\alpha (T-s)} \left\| B\right\| ^2 ds\right) ^{1/2} \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \qquad + \left( \int _ \tau ^T c^2 e^{-2\alpha (T-s)} \left\| E\right\| ^2 ds\right) ^{1/2} \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \quad = \left\| B\right\| c \left( \frac{1- e^{-2\alpha (T-\tau )} }{2\alpha }\right) ^{1/2} \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \qquad + \left\| E\right\| c \left( \frac{1- e^{-2\alpha (T-\tau )} }{2\alpha }\right) ^{1/2} \left( \int _\tau ^T \left\| w(s) \right\| ^2ds\right) ^{1/2} \\{} & {} \le \left\| B\right\| c \frac{1 }{\sqrt{2\alpha }} \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} + \left\| E\right\| c \frac{1 }{\sqrt{2\alpha }} \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2} \\{} & {} \quad = \frac{c }{\sqrt{2\alpha }}\left( \left\| B\right\| \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2}+\left\| E\right\| \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2}\right) . \end{aligned}$$

Since \(\tau \) is an arbitrary element of (0, T), we obtain that

$$\begin{aligned} \begin{aligned} \Vert x_{u,v}(T)\Vert&\le ce^{-\alpha T}\Vert x_0\Vert + \inf _{\tau \in (0,T)} \left\{ e^{- \alpha (T-\tau )} \frac{c }{\sqrt{2\alpha }} \Big (\left\| B\right\| \Vert u\Vert _{L^2} + \left\| E\right\| \Vert w\Vert _{L^2} \Big )\right. \\&\quad + \frac{c }{\sqrt{2\alpha }} \left( \left. \left\| B\right\| \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} +\left\| E\right\| \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2} \right) \right\} , \end{aligned} \end{aligned}$$

and hence

$$\begin{aligned} \begin{aligned} 0 \le \lim _{T\rightarrow \infty }\Vert x_{u,v}(T)\Vert&\le \lim _{T\rightarrow \infty }\inf _{\tau \in (0,T)} \left\{ \frac{c e^{-\alpha (T-\tau )}}{\sqrt{2\alpha }} \Big (\left\| B\right\| \Vert u\Vert _{L^2} + \left\| E\right\| \Vert w\Vert _{L^2}\Big ) \right. \\&\quad + \frac{c }{\sqrt{2\alpha }} \left( \left\| B\right\| \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} + \left. \left\| E\right\| \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2} \right) \right\} . \end{aligned} \end{aligned}$$

Because

$$\begin{aligned} \int _0^\infty \Vert u(s)\Vert ^2 ds< \infty \text{ and } \int _0^\infty \Vert w(s)\Vert ^2<\infty , \end{aligned}$$

for each \(\varepsilon > 0\), there exists \(\tau _\varepsilon \) such that

$$\begin{aligned} \int _{\tau _\varepsilon }^\infty \Vert u(s)\Vert ^2 ds< \varepsilon ^2 \text{ and } \int _{\tau _\varepsilon }^\infty \Vert w(s)\Vert ^2 ds <\varepsilon ^2. \end{aligned}$$

Moreover, there exists \(T_\varepsilon >\tau _\varepsilon \) such that for each \(T>T_\varepsilon \)

$$\begin{aligned} e^{- \alpha (T-\tau _\varepsilon )} <\varepsilon . \end{aligned}$$

From here, it follows that

$$\begin{aligned}{} & {} \lim _{T\rightarrow \infty }\inf _{\tau \in (0,T)} \left\{ \frac{c e^{-\alpha (T-\tau )} }{\sqrt{2\alpha }} \Big (\left\| B\right\| \Vert u\Vert _{L^2} + \left\| E\right\| \Vert w\Vert _{L^2}\Big ) \right. \\{} & {} \quad +\frac{c }{\sqrt{2\alpha }} \left( \left\| B\right\| \left( \int _\tau ^T \left\| u(s) \right\| ^2 ds\right) ^{1/2} + \left. \left\| E\right\| \left( \int _\tau ^T \left\| w(s) \right\| ^2 ds\right) ^{1/2}\right) \right\} =0, \end{aligned}$$

and hence

$$\begin{aligned} \lim _{T\rightarrow \infty } x_{u,v}(T)=0. \end{aligned}$$

Then,

$$\begin{aligned} \begin{aligned} I (x_0, t_0, u,w)&= \int _{t_0}^\infty \left[ x_{u,w}^\top (t) Q x_{u,w}(t) + u^\top (t) R u(t)- w^\top (t) S w(t) \right] dt \\&=\int _{t_0}^\infty \left[ x_{u,w}^\top (t)\left( Q + P E S^{-1} E^\top P - P B R^{-1} B^\top P + A^\top P + P A \right) x_{u,w} (t) \right] dt \\&\quad +\int _{t_0}^\infty \left[ u^\top (t) R u(t) + u^\top (t)B^\top P x_{u,w}(t) \right] dt\\&\quad +\int _{t_0}^\infty \left[ x^\top _{u,w} (t) P B R^{-1} B ^\top P x_{u,w}(t) + x_{u,w}^\top (t) P B u(t) \right] dt \\&\quad -\int _{t_0}^\infty \left[ w^\top (t) S w(t) - w^\top (t)E^\top P x_{u,w}(t) \right] dt \\&\quad -\int _{t_0}^\infty \left[ x_{u,w}^\top (t) P E S^{-1} E ^\top P x_{u,w}(t) - x_{u,w}^\top (t) P E w(t) \right] dt \\&\quad -\int _{t_0}^\infty \left[ u^\top (t)B^\top P x_{u,w}(t) + x_{u,w}^\top (t) P B u(t) \right] dt\\&\quad -\int _{t_0}^\infty \left[ w^\top (t)E^\top P x_{u,w}(t) + x_{u,w}^\top (t) P E w(t) \right] dt \\&\quad -\int _{t_0}^\infty \left[ x^\top (t)\left( A^\top P + P A \right) x_{u,w}(t) \right] dt \\&=\int _{t_0}^\infty \left[ \left\| u(t) + R^{-1} B^\top P x_{u,w}(t) \right\| _R^2 - \left\| w(t)-S^{-1}E^\top P x_{u,w}(t) \right\| _S^2\right] dt \\&\quad -\int _{t_0}^\infty \frac{d}{dt} \left[ x_{u,w}^\top (t) P x_{u,w}(t)\right] dt \\&= x_0^\top P x_0 +\int _{t_0}^\infty \left\| u(t)+R^{-1}B^\top P x_{u,w}(t) \right\| _R ^2 dt \\&- \int _{t_0}^\infty \left\| w(t)-S^{-1}E^\top P x_{u,w}(t) \right\| _S^2 dt, \end{aligned} \end{aligned}$$

i.e.,

$$\begin{aligned} I (x_0, t_0, u,w) = x_0^\top P x_0+ \end{aligned}$$
(13)
$$\begin{aligned} \int _{t_0}^\infty \left\| u(t)+R^{-1}B^\top P x_{u,w}(t) \right\| _R ^2 dt - \int _{t_0}^\infty \left\| w(t)-S^{-1}E^\top P x_{u,w}(t) \right\| _S^2 dt. \end{aligned}$$

The definition of \({\bar{u}}\) and \({\bar{w}}\) (according to (4)) implies that

$$\begin{aligned} {\bar{u}}(x_{{\bar{u}}, {\bar{w}}}(t) )=-R^{-1}B^\top P x_{{\bar{u}}, {\bar{w}}}(t) \text{ and } {\bar{w}}(x_{{\bar{u}}, {\bar{w}}}(t) )=S^{-1}E^\top P x_{\bar{u},{\bar{w}}}(t). \end{aligned}$$

Then,

$$\begin{aligned} I(x_0, t_0, {\bar{u}}, {\bar{w}})= x_0^\top P x_0. \end{aligned}$$

Also,

$$\begin{aligned} I(x_0, t_0, u, {\bar{w}}) = \int _{t_0}^\infty \Vert u(t)+R^{-1}B^\top P x_{u,{\bar{w}}}(t) \Vert _R^2 dt + x_0^\top P x_0 \ge x_0^\top P x_0 \end{aligned}$$

and

$$\begin{aligned} I(x_0, t_0, {\bar{u}}, w)= - \int _{t_0}^\infty \Vert w(t)- S^{-1}E^\top P x_{{\bar{u}},w}(t) \Vert _S ^2 dt + x_0^\top P x_0 \le x_0^\top P x_0. \end{aligned}$$

Hence, we have obtained that

$$\begin{aligned} I(x_0, t_0, {\bar{u}}, w) \le I(x_0, t_0, {\bar{u}}, {\bar{w}}) \le I(x_0, t_0, u, {\bar{w}}) \end{aligned}$$

for each control function pair \(u\in \mathcal U\) and \(w \in \mathcal W\), i.e., \(({\bar{u}}, {\bar{w}})\) is a saddle point (Nash equilibrium) for the considered differential game. \(\square \)

Proof

Since U is a convex neighborhood of the origin in \({\mathbb {R}}^k\), there exists \(\varepsilon >0\) such that the closed ball \(\varepsilon \bar{\textbf{ B }}_k \subset {\mathbb {R}}^k \) is a subset of U. We can choose the positive real \(\delta _0>0\) to be so small that the norm of the vector \(-R^{-1}B^\top Px\) is less than \(\varepsilon \) for each \(x \in \delta _0 \bar{\textbf{ B }}_n \), and hence \(-R^{-1}B^\top Px\in U\). Thus, i) holds true for each \(0<\delta \le \delta _0\).

Let

$$\begin{aligned} \bar{\alpha }:= \min \{x^\top P x:\ \Vert x\Vert =\delta _0\}. \end{aligned}$$

Because the matrix P is positive definite, the real \(\bar{\alpha }\) is positive. We choose an arbitrary \(\alpha \in (0, \bar{\alpha })\) and set

$$\begin{aligned} \Omega := \{x \in \delta _0\bar{\textbf{ B }}_n: \ x^\top P x \le \alpha \}. \end{aligned}$$

Clearly, the set \(\Omega \) is a compact neighborhood of the origin contained in the interior of the ball \(\delta _0\bar{\textbf{ B}}_n \subset {\mathbb {R}}^n\).

Let x be an arbitrary point from \(\Omega \). The definition of the set \(\Omega \) implies that \(x \in \delta _0\bar{\textbf{ B }}_n \) and \(x^\top P x \le \alpha \). Then, the relation \(x \in \delta _0\bar{\textbf{ B}}_n \) implies that \(-R^{-1}B^\top Px \in U\).

Let us fix an arbitrary point y from \(\Omega \) and a real \(\tau \ge t_0\). Then, the trajectory \({\bar{x}}_{{\bar{u}}, \bar{w}}(\cdot ,y,\tau )\) corresponding to the controls \({\bar{u}}\) and \(\bar{w}\) and starting from y at the moment of time \(\tau \) is the solution of the following Cauchy problem:

$$\begin{aligned} \dot{x}(t)= {\bar{A}} x(t), ~~x(\tau )=y, \end{aligned}$$

where \({\bar{A}}=A -BR^{-1}B^\top P + ES^{-1}E^\top P\). Because P is a symmetric positive definite solution of the matrix algebraic Riccati equation

$$\begin{aligned} Q + XES^{-1}E^\top X - XBR^{-1}B^\top X + A^\top X + X A=0, \end{aligned}$$

one can check that

$$\begin{aligned} P{\bar{A}} + {\bar{A}}^\top P = - {\bar{Q}}. \end{aligned}$$

Indeed, we have that

$$\begin{aligned}{} & {} P(A -BR^{-1}B^\top P + ES^{-1}E^\top P) + (A -BR^{-1}B^\top P + ES^{-1}E^\top P)^\top P \\{} & {} \quad =PA -PBR^{-1}B^\top P + PES^{-1}E^\top P + A^\top P - P B R^{-1}B^\top P + PES^{-1}E^\top P \\{} & {} \quad =P A + A^\top P -2PBR^{-1}B^\top P + 2PES^{-1}E^\top P \\{} & {} \quad = -Q -PBR^{-1}B^\top P + PES^{-1}E^\top P= - {\bar{Q}}. \end{aligned}$$

Because \({\bar{Q}}\) is a symmetric positive definite matrix, the last equality implies that the function \(V_L:{\mathbb {R}}^n \rightarrow {\mathbb {R}}\) defined as \(V_L(x) = x^\top Px\) is a Lyapunov function for the system

$$\begin{aligned} \dot{x} = {\bar{A}} x, \end{aligned}$$
(14)

and because the function \(V _L({\bar{x}}(\cdot )) \) is decreasing, we obtain that

$$\begin{aligned} V_L( {\bar{x}}(t)) \le V_L( x_0)\le \alpha \end{aligned}$$

for each \(t \ge t_0\), i.e., \({\bar{x}}_{{\bar{u}},{\bar{w}} }(t,y,\tau ) \in \Omega \) for each \(t\ge t_0\). Thus, ii) also holds true.

The positive definiteness of matrices P and Q implies that the system (14) is asymptotically stable at the origin, and hence \({\bar{x}}_{{\bar{u}},{\bar{w}} }(t,y,\tau )\) tends to zero as \(t \rightarrow +\infty \). This completes the proof. \(\square \)

Proof

Let us assume that \(x_{{\hat{u}}, {\hat{w}}}( t)\) does not belong to \( \delta \bar{\textbf{ B }}_n\) for each \( t\ge t_0\), i.e., for each \( t\ge t_0\), we have that \(\Vert x_{{\hat{u}}, {\hat{w}}}( t)\Vert >\delta \). The positive definiteness of the matrices P and Q implies the existence of positive reals p and q such that \(x^\top P x \ge p \Vert x\Vert ^2\) and \(x^\top Q x \ge q \Vert x\Vert ^2\) for each \(x \in \mathbb R^n\). Then,

$$\begin{aligned}{} & {} I_T(x_0,t_0, {\hat{u}},{\hat{w}}):= \int _{t_0}^T \left( x^\top _{{\hat{u}}, {\hat{w}}} (t) Q x_{{\hat{u}}, {\hat{w}}}(t) + {\hat{u}}^\top (t) R {\hat{u}}(t)- {\hat{w}}^\top (t) S {\hat{w}}(t) \right) dt + x^\top _{{\hat{u}}, {\hat{w}}} (T) P x_{{\hat{u}}, {\hat{w}}}(T) \\{} & {} >(q (T-t_0)+ p)\delta ^2 - \int _{t_0}^T \left( {\hat{w}}^\top (t) S {\hat{w}}(t) \right) dt \ge (q (T-t_0)+ p)\delta ^2 - \Vert S\Vert \int _{t_0}^T \Vert {\hat{w}} (t)\Vert ^2 dt. \end{aligned}$$

Then,

$$\begin{aligned}{} & {} {\bar{V}}_U(x_0, t_0)=\lim _{T\rightarrow \infty } I_T(x_0,t_0, {\hat{u}},{\hat{w}}) \\{} & {} \ge \lim _{T\rightarrow \infty } \left( (q (T-t_0)+ p)\delta ^2 - \Vert S\Vert \int _{t_0}^T \Vert {\hat{w}} (t)\Vert ^2 dt \right) . \end{aligned}$$

The last inequality is impossible because \(\int _{t_0}^{\infty } \Vert {\hat{w}} (t)\Vert ^2<\infty \). The obtained contradiction shows that there exists \(T\ge t_0\) such that \(x_{{\hat{u}}, {\hat{w}}}( T) \in \delta \bar{\textbf{ B }}_n\). According to Proposition 2, we obtain that \(x_{{\hat{u}}, {\hat{w}}}( t) \in \delta \bar{\textbf{ B }}_n\) for each \(t\ge T\) and \(x_{{\hat{u}}, {\hat{w}}}( t) \rightarrow 0\) as \(t\rightarrow \infty \). This completes the proof. \(\square \)

Proof

Because \(\Vert x_{{\hat{u}}, {\hat{w}}} (T)\Vert \le \delta \), Proposition 2 implies that

$$\begin{aligned}{} & {} {\bar{V}}_{U } (x _{{\hat{u}}, {\hat{w}}} (T), T) =x^\top _{{\hat{u}}, {\hat{w}}} (T) P x_{{\hat{u}}, {\hat{w}}}(T)= {\bar{V}} (x _{{\hat{u}}, {\hat{w}}} (T), T) \\{} & {} =\int _{T}^\infty \left( x^\top _{{\bar{u}}, {\bar{w}}} (t) Q x_{{\bar{u}}, {\bar{w}}}(t) + {\bar{u}}^\top (t) R {\bar{u}}(t)- {\bar{w}}^\top (t) S \bar{w}(t) \right) dt. \end{aligned}$$

From here, we obtain that

$$\begin{aligned} V_{U, T} (x_0, t_0 ){} & {} =\int _{t_0}^{T} \left( x^\top _{{\hat{u}}, {\hat{w}}} (t) Q x_{{\hat{u}}, {\hat{w}}}(t) + {\hat{u}}^\top (t) R {\hat{u}}(t)- {\hat{w}}^\top (t) S \hat{w}(t) \right) dt + x^\top _{{\hat{u}}, {\hat{w}}} (T) P x_{{\hat{u}}, \hat{w}}(T)\\{} & {} =\int _{t_0}^T \left( x^\top _{{\hat{u}}_\infty , {\hat{w}}_\infty } (t) Q x_{{\hat{u}}_\infty , {\hat{w}}_\infty }(t) + {\hat{u}}^\top _\infty (t) R {\hat{u}}_\infty (t)- {\hat{w}}^\top _\infty (t) S {\hat{w}}_\infty (t) \right) dt \\{} & {} \quad + \int _{T}^\infty \left( x^\top _{{\hat{u}}_\infty , {\hat{w}}_\infty } (t) Q x_{{\hat{u}}_\infty , {\hat{w}}_\infty }(t) + \hat{u}^\top _\infty (t) R {\hat{u}}_\infty (t)- {\hat{w}}^\top _\infty (t) S {\hat{w}}_\infty (t) \right) dt \\{} & {} =I(x_0,t_0, {\hat{u}}_\infty , {\hat{w}}_\infty ) \end{aligned}$$

Let u be an arbitrary element of \(\mathcal{U}_U\) defined on \([t_0, +\infty )\). We fix an arbitrary \(\varepsilon >0\) and choose \(\hat{w}_{u,\varepsilon } \in \mathcal W \) so that

$$\begin{aligned} \sup _{w \in \mathcal W} I_T (x_0,t_0, u, w ) <I_T (x_0,t_0, u, {\hat{w}}_{u,\varepsilon }) + \varepsilon . \end{aligned}$$

Then,

$$\begin{aligned} V_{U, T} (x_0, t_0 ){} & {} = I_{ T} (x_0,t_0, {\hat{u}}, {\hat{w}}) \le \sup _{w \in \mathcal W} I_T (x_0,t_0, u, w ) < I_{ T} (x_0,t_0, u, {\hat{w}}_{u,\varepsilon }) + \varepsilon \\{} & {} =\int _{t_0}^{T} \left( x^\top _{ u, {\hat{w}}_{u,\varepsilon }} (t) Q x_{ u, {\hat{w}}_{u,\varepsilon }}(t) + u^\top (t) R u(t)- \hat{w}_{u,\varepsilon }^\top (t) S {\hat{w}}_{u,\varepsilon }(t) \right) dt \\{} & {} \quad +x^{ \top }_{ u, {\hat{w}}_{u,\varepsilon }} (T) P x_{ u, \hat{w}_{u,\varepsilon }}(T)+ \varepsilon \\{} & {} =\int _{t_0}^{T} \left( x^\top _{ u, {\hat{w}}_{u,\varepsilon }} (t) Q x_{ u, {\hat{w}}_{u,\varepsilon }}(t) + u^\top (t) R u(t)- \hat{w}_{u,\varepsilon }^\top (t) S {\hat{w}}_{u,\varepsilon }(t) \right) dt\\{} & {} \quad +{\bar{V}} (x_{ u, {\hat{w}}_{u,\varepsilon }}(T), T) + \varepsilon \le \end{aligned}$$

(here we take into account (5))

$$\begin{aligned}{} & {} \int _{t_0}^{T} \left( x^\top _{ u, {\hat{w}}_{u,\varepsilon }} (t) Q x_{ u, {\hat{w}}_{u,\varepsilon }}(t) + u^\top (t) R u(t)- \hat{w}_{u,\varepsilon }^\top (t) S {\hat{w}}_{u,\varepsilon }(t) \right) dt\\{} & {} \quad +\int _{T}^\infty \left( x^\top _{ u, {\bar{w}} } (t) Q x_{ u, {\bar{w}} }(t) + u^\top (t) R u(t)- {\bar{w}}^\top (t) S {\bar{w}} (t) \right) dt + \varepsilon \\{} & {} \le \sup _{w \in \mathcal W} I (x_0, t_0,u, w )+ \varepsilon . \end{aligned}$$

If we let \(\varepsilon \) to tend to zero, then we obtain that

$$\begin{aligned} I (x_0,t_0, {\hat{u}}_\infty , {\hat{w}}_\infty )= V_{U, T} (x_0, t_0 ) \le \sup _{w \in \mathcal W} I (x_0, t_0,u, w ). \end{aligned}$$

Because u is an arbitrary element of \(\mathcal{U}_U\), the last inequality implies that

$$\begin{aligned} I (x_0,t_0, {\hat{u}}_\infty , {\hat{w}}_\infty ) \le \inf _{u\in \mathcal{U}_U}\sup _{w \in \mathcal W} I (x_0, t_0,u, w ) \end{aligned}$$

This completes the proof. \(\square \)

Proof

The corresponding proof is similar to the proof of Proposition 4. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krastanov, M.I., Rozenov, R. & Stefanov, B.K. On a Constrained Infinite-Time Horizon Linear Quadratic Game. Dyn Games Appl 13, 843–858 (2023). https://doi.org/10.1007/s13235-022-00484-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-022-00484-6

Keywords

JEL Classification