Skip to main content

Advertisement

Log in

Trends in science networks: understanding structures and statistics of scientific networks

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The growing of availability of electronic resources over the Internet enables rapid dissemination of the ideas and changes in the trends and the interaction patterns. In this work, we focus on dynamic, evolving social networks which exhibit numerous features that are also of interest to many researchers in non-social fields such as statistical physics, biology, applied mathematics, and computer science. We investigate how a specific research area (high-energy physics) changes over time, by building complex, interlinked citation, publication, and co-publication networks that evolve and expand constantly through the emergence of new papers and authors. Following an interdisciplinary approach, we perform a wide-ranging analysis of the high-energy physics dataset using techniques such as social networks centrality analysis, topological analysis, investigation of power law characteristics, time series analysis of publication and collaboration frequencies, as well as spatiotemporal analysis to discuss relationships among involved countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Co-publication degree centrality refers to the number of links that start from an author x in the author-to-paper publication network defined in Sect. 3.

References

  • Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Proceedings of the European conference on machine learning and knowledge discovery in databases: Part I. Springer-Verlag, Slovenia, pp 13–28

    Google Scholar 

  • Albert R, Barabasi A (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85(24):5234–5237

    Article  Google Scholar 

  • Allison PD, Long JS, Krauze TK (1982) Cumulative advantage and inequality in science. Am Sociol Rev 47:615–625

    Article  Google Scholar 

  • Barabasi A (2002) Linked: the new science of networks. Perseus Publishing, Cambridge

    Google Scholar 

  • Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Barabasi A, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A: Stat Mech Appl 311(3–4):590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Batty M (2008) The size, scale and shape of cities. Science 319(5864):769–771

    Article  Google Scholar 

  • Bauer K, Bakkalbasi N (2005) An examination of citation counts in a new scholarly communication environment. D-Lib Magazine 11(9). doi:10.1045/september2005-bauer. http://dx.doi.org/10.1045/september2005-bauer

  • Borner K, Maru J, Goldstone R (2004) The simultaneous evolution of author and paper networks. Proc Natl Acad Sci USA 101:5266–5273

    Article  Google Scholar 

  • Brookhaven National Laboratories (2011) Star collaboration. Retrieved from http://www.star.bnl.gov/

  • Carley KM (1990) Structural constraints on communication: the diffusion of the homomorphic signal analysis technique through scientific fields. J Math Sociol 15(3–4):207–246

    Article  Google Scholar 

  • Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput Surv 38(1):1–78

    Article  Google Scholar 

  • Clauset A, Young M, Gleditsch K (2007) On the frequency of severe terrorist attacks. J Confl Resolut 51(58):58–88

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  MathSciNet  MATH  Google Scholar 

  • Cole JR, Cole S (1973) Social stratification in science. University of Chicago Press, Chicago

    Google Scholar 

  • Cornell University (2011) Retrieved from Cornell University Library (arXiv): http://arxiv.org/

  • Crane D (1972) Invisible colleges: diffusion of knowledge in scientific communities. University of Chicago Press, Chicago

    Google Scholar 

  • De Bellis N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics. Scarecrow Press, Lanham

    Google Scholar 

  • de Solla Price DJ (1965) Networks of scientific paper. Science 149(3683):510–515

    Article  Google Scholar 

  • de Solla Price DJ, Beaver D (1966) Collaboration in an invisible college. Am Psychol 21(11):1011–1018

    Article  Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Freeman LC (2004) The development of social network analysis: a study in the sociology of science. Empirical Press, Vancouver

    Google Scholar 

  • Friedkin NE (1998) A structural theory of social influence. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hamming R (1950) Error detecting and error correcting codes. Bell Syst Tech J 29(2):147–160

    MathSciNet  Google Scholar 

  • Harande Y (2001) Author productivity and collaboration: an investigation of the relationship using the literature of technology. Libri 51(2):124–127

    Article  Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Annal Stat 3(5):1163–1174

    Article  MATH  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102(46):16569–16572

    Article  Google Scholar 

  • Hood WW, Wilson CS (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2):291–314

    Article  Google Scholar 

  • Jones DL (2011) Overview of FFT algorithms. Retrieved from http://cnx.org/content/m12026/latest/?collection=col10281/latest

  • Krackhardt D (1987) QAP partialling as a test of spuriousness. Social Networks 9(2):171–186

    Article  MathSciNet  Google Scholar 

  • Krackhardt D (1992) A caveat on the use of the quadratic assignment procedure. J Quant Anthropol 3(4):279–296

    Google Scholar 

  • Kuhn TS (1970) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Leicht E, Clarkson G, Shedden K, Newman M (2007) Large-scale structure of time evolving citation networks. Eur Phys J B-Condensed Matter Complex Syst 59(1):75–83

    Article  MATH  Google Scholar 

  • Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Las Vegas, pp 462–470

    Google Scholar 

  • Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436

    Article  Google Scholar 

  • Leydesdorff L (2007) Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. J Am Soc Inf Sci Technol 58(9):1303–1319

    Article  Google Scholar 

  • Lievrouw LA, Carley KM (1990) Changing patterns of communication among scientists in an era of telesciences. Technol Soc 12(4):457–477

    Article  Google Scholar 

  • Martin JL (2002) Power, authority, and the constraint of belief systems. Am J Sociol 107(4):861–904

    Article  Google Scholar 

  • McCulloh I (2008) Detecting changes in dynamic social networks. Carnegie Mellon University, Institute for Software Research, CASOS, Pittsburgh

    Google Scholar 

  • Merton RK (1968) The Matthew effect in science. Science 159(3810):56–63

    Article  Google Scholar 

  • Moody J (2004) The structure of a social science collaboration network: disciplinary cohesion from 1963 to 1999. Am Sociol Rev 69(2):213–238

    Article  Google Scholar 

  • Müller-Birn C, Meuthrath B, Erber A, Burkhart S, Baumgrass A, Lehmann J et al (2011) Seeing similarity in the face of difference: enabling comparison of online production systems. Soc Netw Anal Min 1(2):127–142

    Article  Google Scholar 

  • Nanda S, Kotz D (2011) Social network analysis plugin (SNAP) for mesh networks. Wireless Communications and Networking Conference (WCNC). IEEE, pp 725–730

  • Newman M (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci 98(2):404–409

    Article  MathSciNet  MATH  Google Scholar 

  • Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Newman M (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205

    Article  Google Scholar 

  • Newman M (2005) Power laws, pareto distributions, and Zipf’s Law. Contemp Phys 46:323–351

    Article  Google Scholar 

  • Nicolaisen J (2010) Bibliometrics and citation analysis: from the science citation index to cybermetrics. J Am Soc Inform Sci Technol (JASIST) 61(1):205–207

    Article  Google Scholar 

  • Rosen D, Barnett G, Kim J (2011) Social networks and online environments: when science and practice co-evolve. Soc Netw Anal Min 1(1):27–42

    Article  Google Scholar 

  • Sabin WE (2008) Discrete-signal analysis and design. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Scott J (1988) Social network analysis. Sociology 22(1):109–127

    Article  Google Scholar 

  • Scott J (2011) Social network analysis: developments, advances, and prospects. Soc Netw Anal Min 1(1):21–26

    Article  Google Scholar 

  • Sharara H, Singh L, Getoor L, Mann J (2011) Understanding actor loyalty to event-based groups in affiliation networks. Soc Netw Anal Min 1(2):115–126

    Article  Google Scholar 

  • SIGKDD CUP (2003) Retrieved from http://www.sigkdd.org/kdd2003/kddcup.html

  • Smith SW (2011) How the FFT works? Retrieved from http://www.dspguide.com/ch12/2.htm

  • Subramanyam K (1983) Bibliometric studies of research collaboration: a review. J Inform Sci 6(1):33–38

    Article  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • White HD, Griffith BC (1981) Author co-citation: a literature measure of intellectual structure. J Am Soc Inform Sci 32(3):163–171

    Article  Google Scholar 

  • White HD, McCain KW (1998) Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J Am Soc Inform Sci 49(4):327–355

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Niting Qi and Dongyang Teng for their help in extending the dataset studied in this research, and the anonymous reviewers for their feedback and suggestions for improvement. Financial support was provided by the Defense Threat Reduction Agency (DTRA) under grant number HDTRA11010102. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Threat Reduction Agency (DTRA) or the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miray Kas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kas, M., Carley, K.M. & Carley, L.R. Trends in science networks: understanding structures and statistics of scientific networks. Soc. Netw. Anal. Min. 2, 169–187 (2012). https://doi.org/10.1007/s13278-011-0044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13278-011-0044-6

Keywords

Navigation