Skip to main content
Log in

Excavating social circles via user interests

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The rapid evolution of modern social networks motivates the design of networks based on users’ interests. Using popular social media such as Facebook and Twitter, we show that this new perspective can bring more meaningful information about the networks. In this paper, we model user-interest-based networks by deducing intent from social media activities such as comments and tweets of millions of users in Facebook and Twitter, respectively. These interactive contents derive networks that are dynamic in nature as the user interests can evolve due to temporal and spatial activities occurring around the user. To excavate social circles, we develop an approach that iteratively removes the influence of the communities identified in the previous steps by widely used Clauset, Newman, and Moore (CNM) community detection algorithm. Experimental results show that our approach can detect communities at a much finer scale compared to the CNM algorithm. Our user-interest-based model and community extraction methodology together can be used to identify target communities in the context of business requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.facebook.com/.

  2. http://twitter.com/.

  3. http://developers.facebook.com/.

  4. https://dev.twitter.com/docs/.

  5. http://mbostock.github.com/d3/.

  6. http://pulse.eecs.northwestern.edu/~drp925/inc/graph.php.

  7. http://newsroom.t-mobile.com/articles/t-mobile-nba-all-star-wade-barkley-basketball.

  8. http://cs.utsa.edu/~jruan/qcut.tar.

References

  • Albert R, Jeong H, Barabasi A (1999) Diameter of the world-wide web. Nature 401:130–131

    Article  Google Scholar 

  • Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. PNAS 97(21):11149–11152

    Google Scholar 

  • Amis R (2007) You can’t ignore social media: How to measure internet efforts to your organisation’s best advantage. Tactics, p 10

  • Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw 33:309–320

    Article  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066,111

    Google Scholar 

  • Corallo M (2013) The average facebook user. http://edudemic.com/wp-content/uploads/2013/02/facebook-average-user.jpg

  • Csardi G, Nepusz T (2003) The igraph library. http://igraph.sourceforge.net

  • Donetti L, Munoz MA (2004) Detecting network communities: a new systematic and efficient algorithm. J Stat Mech Theory Exp 2004(10):10012

  • de Price DJS (1965) Networks of scientific papers. Science 149:510–515

    Article  Google Scholar 

  • Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. Comput Commun Rev 29:251–262

    Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nature Biotechnol18:1121–1122

    Article  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174

    Article  MathSciNet  Google Scholar 

  • Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36

    Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Guha S, Rastogi R, Shim K (2000) Rock: a robust clustering algorithm for categorical attributes. Inf Syst 25(5): 345–366

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  Google Scholar 

  • Kashoob S, Caverlee J (2012) Temporal dynamics of communities in social bookmarking systems. Soc Netw Anal Min 2(4): 387–404

    Article  Google Scholar 

  • Leskovec J (2009) Stanford network analysis project. http://snap.stanford.edu

  • Leydesdorff L (2008) On the normalization and visualization of author co-citation data: Salton’s cosine versus the jaccard index. J Am Soc Inf Sci Technol 59(1):77–85

    Article  Google Scholar 

  • Liu Y, Liao W, Choudhary A (2003) Design and evaluation of a parallel hop clustering algorithm for cosmological simulation. In: International Parallel and Distributed Processing Symposium, p 82a

  • Madduri K (2008) Snap: small-world network analysis and partitioning. http://snap-graph.sourceforge.net

  • Nair V, Dua S (2012) Folksonomy-based ad hoc community detection in online social networks. Soc Netw Anal Min 2(4):305–328

    Article  Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. PNAS 98(2):404–409

    Article  MATH  Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. PNAS 103(23):8577–8582

    Article  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    Google Scholar 

  • Palsetia D, Patwary MMA, Zhang K, Lee K, Moran C, Xie Y, Honbo D, Agrawal A, Liao WK, Choudhary A (2012) User-interest based community extraction in social networks. In: Proceedings of the KDD workshop on social network mining and analysis (SNAKDD), pp 1–4

  • Pinney J, Westhead D (2007) Betweenness-based decomposition methods for social and biological networks. Interdiscipl Stat Bioinf pp 87–90

  • Pons P, Latapy M (2004) Computing communities in large networks using random walks. J Graph Algorithms Appl 10:284–293

    Google Scholar 

  • Radicchi F (2013) Detectability of communities in networks. URL:http://arxiv.org/abs/1306.1102

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. PNAS 101:2568–2663

    Google Scholar 

  • Redner S (1998) How popular is your paper? an empirical study of the citation distribution. Eur Phys J B 4:131–134

    Google Scholar 

  • Ruan J, Zhang W (2008) Identifying network communities with a high resolution. Phys Rev E 77(1):016104

    Google Scholar 

  • Skory S, Turk MJ, Norman ML, Coil AL (2010) Parallel hop: A scalable halo finder for massive cosmological data sets. Astrophys J Suppl Ser 191(1):43

    Article  Google Scholar 

  • Smith D, Menon S, Sivakumar K (2005) Online peer and editorial recommendations, trust, and choice in virtual markets. J Interact Mark 19(3):15–37. doi:10.1002/dir.20041

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  Google Scholar 

  • Tchuente D, Canut CMF, Jessel N, Péninou A, Sèdes F (2013) A community-based algorithm for deriving users’ profiles from egocentrics networks: experiment on facebook and dblp. Soc Netw Anal Min 3(3):667–683

    Article  Google Scholar 

  • Wakita, K, Tsurumi T (2007) Finding community structure in mega-scale social networks:[extended abstract]. In: Proceedings of the 16th international conference on World Wide Web. ACM, New York, pp 1275–1276

  • Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  Google Scholar 

  • Wu F, Huberman BA (2004) Finding communities in linear time: a physics approach. Eur Phys J B 38:331–338

    Article  Google Scholar 

  • Zhang S, Ning X, Ding C (2009) Maximizing modularity density for exploring modular organization of protein interaction networks. In: Third international symposium on optimization and systems biology, pp 361–370

  • Zhao Y, Levina E, Zhu J (2011) Community extraction for social networks. PNAS 108(18):7321–7326

    Article  Google Scholar 

  • Zhou H, Lipowsky R (2004) Network brownian motion: a new method to measure vertex–vertex proximity and to identify communities and subcommunities. Comput Sci ICCS, pp 1062–1069

Download references

Acknowledgments

We thank William Hendrix for helpful discussions and comments on the preliminary drafts of the paper. We thank Christopher Moran for helping us plotting the dendrograms and Kathy Lee, Kunpeng Zhang, Yves Xie, and Daniel Honbo for collecting testdata from Facebook and Twitter. This work is supported in part by the following grants: NSF awards CCF-0833131, CNS-0830927, IIS-0905205, CCF-0938000, CCF-1029166, ACI-1144061, and IIS-1343639; DOE awards DE-FG02-08ER 25848, DE-SC0001283, DE-SC0005309, DESC0005340, and DESC0007456; AFOSR award FA9550-12-1-0458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Palsetia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palsetia, D., Patwary, M.M.A., Agrawal, A. et al. Excavating social circles via user interests. Soc. Netw. Anal. Min. 4, 170 (2014). https://doi.org/10.1007/s13278-014-0170-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-014-0170-z

Keywords

Navigation