Abstract
This paper completes an analysis started a few years ago which has exploited Facebook as a tool suitable for collecting and analyzing Crohn’s disease patients’ reactions to the Infliximab treatment. We here finish off such work by comparing the satisfaction recorded with the use of sentiment analysis techniques as provided by intelligent tools for subjectivity analysis (e.g., OpinionFinder) against the satisfaction recorded by human experts (both physicians and non-medical experts). In summary, the following results appear to be of particular interest: (i) the Infliximab treatment confirms its efficacy as a result of the interpretations of Facebook posts given by both automatic tools and human experts, (ii) physicians tend to classify as neutral many posts on Infliximab that non-medical experts classified as negative, and (iii) OpinionFinder is inclined to confirm the evaluations provided by medical experts.







Similar content being viewed by others
References
Antheunis ML, Tates K, Nieboer TE (2013) Patients’ and health professionals’ use of social media in health care: motives, barriers and expectations. Patient Educ Couns 92(3):426–431. doi:10.1016/j.pec.2013.06.020
Balka E, Bjorn P, Wagner I (2008) Steps toward a typology for health informatics. In: Proceedings of the ACM 2008 conference on Computer supported cooperative work (CSCW’08). ACM Press, New York, p 515–524. doi:10.1145/1460563.1460645
Burke M, Kraut R, Williams D (2010) Social use of computer- mediated communication by adults on the autism spectrum. In: Proceedings of the 2010 ACM conference on computer supported cooperative work (CSCW’10). ACM Press, New York, p 425–434. doi:10.1145/1718918.1718991
Caspersen S, Elkjaer M, Riis L, Pedersen N, Mortensen C, Jess T, Sarto P, Hansen TS, Wewer V, Bendtsen F, Moesgaard F (2008) Infliximab for inflammatory bowel disease in Denmark 1999–2005: clinical outcome and follow-up evaluation of malignancy and mortality. Clin Gastroenterol Hepatol 6(11):1212–1217. doi:10.1016/j.cgh.2008.05.010
Chancellor S, Mitra T, De Choudhury M (2016) Recovery amid pro-anorexia: analysis of recovery in social media. In: Proceedings of the 2016 CHI conference on human factors in computing systems (CHI ‘16). ACM Press, New York, p 2111–2123. doi:10.1145/2858036.2858246
Cline RJW (2001) Consumer health information seeking on the internet: the state of the art. Health Educ Res 16(6):671–692
Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull 70(4):213
Colombel JF, Loftus EV, Tremaine WJ, Egan LJ, Harmsen WS, Schleck CD, Zinsmeister AR, Sandborn WJ (2004) The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 126(1):19–31. doi:10.1053/j.gastro.2003.10.047
Greaves F, Pape UJ, King D, Darzi A, Majeed A, Wachter RM, Millett C (2012) Associations between Web-based patient ratings and objective measures of hospital quality. Arch Intern Med 172(5):435–436. doi:10.1001/archinternmed.2011.1675
Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L (2013) Harnessing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ Qual Saf 22(3):251–255. doi:10.1136/bmjqs-2012-001527
Greene JA, Choudhry NK, Kilabuk E, Shrank WH (2011) Online social networking by patients with diabetes: a qualitative evaluation of communication with Facebook. J Gen Intern Med 26(3):287–292. doi:10.1007/s11606-010-1526-3
Huh J, Liu LS, Neogi T, Inkpen K, Pratt W (2014) Health vlogs as social support for chronic illness management. ACM Trans Comput Hum Interact 21(4):23. doi:10.1145/2630067
Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):55
Liu Y, Chen Y, Lusch RF, Chen H, Zimbra D, Zeng S (2010) User-generated content on social media: predicting market success with online word-of-mouth. IEEE Intell Syst 25(6):8–12
Mankoff J, Kuksenok K, Kiesler S, Rode JA, Waldman K (2011) Competing online viewpoints and models of chronic illness. In: Proceedings of the 2011 annual conference on human factors in computing systems (CHI ‘11). ACM Press, New York, p 589–598. doi:10.1145/1978942.1979027
Ohno-Machado L (2012) Informatics 20 implications of social media, mobile health, and patient-reported outcomes for health-care and individual privacy. J Am Med Inform Assoc 19(5):683. doi:10.1136/amiajnl-2012-001224
Roccetti M, Casari A, Marfia F (2015) Inside chronic autoimmune disease communities: a social networks perspective to Crohn’s patient behavior and medical information. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM ‘15). ACM Press, New York, p 1089–1096. doi:10.1145/2808797.2808813
Roccetti M, Prandi C, Salomoni P, Marfia G (2016a) Unleashing the true potential of social networks: confirming infliximab medical trials through Facebook posts. Netw Model Anal Health Inform Bioinform 5:15. doi:10.1007/s13721-016-0122-9
Roccetti M, Salomoni P, Prandi C, Marfia G, Montagnani M, Gningaye L (2016b) Understanding Crohn’s disease patients reaction to infliximab from Facebook: A medical perspective. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM ‘16). ACM Press, New York, p 1007–1010. doi:10.1109/ASONAM.2016.7752364
Schumaker RP, Zhang Y, Huang CN, Chen H (2012) Evaluating sentiment in financial news articles. Decis Support Syst 53(3):458–464
Van De Belt TH, Engelen LJ, Berben SA, Schoonhoven L (2010) Definition of Health 2.0 and Medicine 2.0: a systematic review. J Med Internet Res 12(2):e18. doi:10.2196/jmir.1350
Van der Eijk M, Faber M (2013) Using online health communities to deliver patient-centered care to people with chronic conditions. J Med Internet Res 15(6):e115. doi:10.2196/jmir.2476
Vania C, Ibrahim M, Adriani M (2014) Sentiment lexicon generation for an under-resourced language. Int J Comput Linguist Appl 5(1):59
Weitzman ER, Cole E, Kaci L, Mandl KD (2011) Social but safe? Quality and safety of diabetes-related online social networks. J Am Med Inform Assoc 18(3):292–297. doi:10.1136/jamia.2010.009712
Wilson T, Hoffmann P, Somasundaran S, Kessler J, Wiebe J, Choi Y, Cardie C, Riloff E, Patwardhan S (2005) OpinionFinder: a system for subjectivity analysis. In: Proceedings of hlt/emnlp on interactive demonstrations (pp. 34-35). Association for computational linguistics. doi:10.3115/1225733.1225751
Wright S (1921) Correlation and causation. J Agric Res 20(7):557–585
Zhang Y, Dang Y, Chen H (2013) Research note: examining gender emotional differences in Web forum communication. Decis Support Syst 55(3):851–860. doi:10.1016/j.dss.2013.04.003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roccetti, M., Salomoni, P., Prandi, C. et al. On the interpretation of the effects of the Infliximab treatment on Crohn’s disease patients from Facebook posts: a human vs. machine comparison. Netw Model Anal Health Inform Bioinforma 6, 11 (2017). https://doi.org/10.1007/s13721-017-0152-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13721-017-0152-y