Skip to main content

Advertisement

Log in

Plectin as a putative novel biomarker for breast cancer: an in silico study

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogenous disease accounting for about 0.68 million deaths among women in 2020. The drive to succumb the fatality in breast cancer, lies in the hands of rapid advancement of novel biomarker, which could render definitive information regarding the prognosis of breast cancer. To expedite the process, Plectin (PLEC), a cytoskeleton linker protein, was speculated as an effective biomarker for breast cancer, due to its implication in various cancer tumorigenesis, but its involvement in breast cancer is still unexplored. To substantiate the claim, an exemplary bioinformatics approach was adopted. In the present study expression, progression, prognosis, mutation characteristics, and its correlation in breast cancer were explored using bioinformatics databases and analytical tools, such as TIMER, GEPIA, UALCAN, cBioportal, bc-GenExMiner and Kaplan–Meier plotters. The results showed significant over-expression of PLEC levels across various types of cancer with striking levels in breast cancer tissues. Over expression regardless of the age, stages, subclasses, and menopause status was exhibited. Estrogen, progesterone receptors status and Scarff–Bloom–Richardson grade, Nottingham prognostic index were positively correlated with PLEC level while showing amplification type of mutation implying overall poor survival (P = 3.923e−3) and positive correlation between PLEC and FAM83H gene expression indicative that PLEC may be deployed as viable breast cancer biomarker. Here, we report PLEC as a novel putative marker for breast cancer using bioinformatics approach which necessitates extensive clinical research to validate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All the data were curated from online sources.

References

  • Anita R, Paramasivam A, Priyadharsini JV, Chitra S (2020) The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res 10(8):2546–2554

    Google Scholar 

  • Bausch D, Mino-Kenudson M, Castillo FC, Warshaw AL, Kelly KA, Thayer SP (2009) Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg 13(11):1948–1954. https://doi.org/10.1007/s11605-009-1001-9

    Article  Google Scholar 

  • Bausch D, Thomas S, Mino-Kenudson M, Fernández-del CC, Bauer TW, Williams M, Warshaw AL, Thayer SP, Kelly KA (2011) Plectin-1 as a novel biomarker for pancreatic cancer. Clin Cancer Res 17(2):302–309. https://doi.org/10.1158/1078-0432

    Article  Google Scholar 

  • Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8:2127–2133

    Google Scholar 

  • Buckup M, Rice MA, HsuEC G-M, Liu S, Aslan M, Bermudez A, Huang J, Pitteri SJ, Stoyanova T (2021) Plectin is a regulator of prostate cancer growth and metastasis. Oncogene 40(3):663–676. https://doi.org/10.1038/s41388-020-01557-9

    Article  Google Scholar 

  • Burch TC, Watson MT, Nyalwidhe JO (2013) Variable metastatic potentials correlate with differential plectin and vimentin expression in syngeneic androgen independent prostate cancer cells. PLoS ONE 8(5):e65005. https://doi.org/10.1371/journal.pone.0065005

    Article  Google Scholar 

  • Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649–658. https://doi.org/10.1016/j.neo.2017.05.002

    Article  Google Scholar 

  • Chen C, Li HF, Hu YJ, Jiang MJ, Liu QS, Zhou J (2019) Family with sequence similarity 83 member H promotes the viability and metastasis of cervical cancer cells and indicates a poor prognosis. Yonsei Med J 60(7):611–618. https://doi.org/10.3349/ymj.2019.60.7.611

    Article  Google Scholar 

  • Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G, Zujewski JA, Hayes DF (2011) International Ki-67 in Breast Cancer Working Group. J Natl Cancer Inst 103(22):1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  Google Scholar 

  • Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G (2018) Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5(2):77–106. https://doi.org/10.1016/j.gendis.2018.05.001

    Article  Google Scholar 

  • Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  Google Scholar 

  • Gaspar P, Holder MV, Aerne BL, Janody F, Tapon N (2015) Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 25(6):679–689. https://doi.org/10.1016/j.cub.2015.01.010

    Article  Google Scholar 

  • Guerrero S, López-Cortés A, García-Cárdenas JM, Armendáriz-Castillo I, Zambrano AK, Indacochea A, Pérez-Villa A, Yumiceba V, Guevara-Ramírez P, Alvarado AJ, Leone PE, Paz-y-Miño C (2020) In silico analyses reveal new putative Breast Cancer RNA-binding proteins. BioRxiv. https://doi.org/10.1101/2020.01.08.898965

    Article  Google Scholar 

  • Győrffy B (2021) Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 19:4101–4109. https://doi.org/10.1007/s10549-009-0674-9

    Article  Google Scholar 

  • Hammond MEH, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immune histochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795. https://doi.org/10.5858/134.7.e48

    Article  Google Scholar 

  • Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146. https://doi.org/10.1016/j.molonc.2012.01.010

    Article  Google Scholar 

  • Hu L, Wu Y, Guan X, Liang Y, Yao X, Tan D, Bai Y, Xiong G, Yang K (2015) Germline copy number loss of UGT2B28 and gain of PLEC contribute to increased human esophageal squamous cell carcinoma risk in Southwest China. Am J Cancer Res 5(10):3056–3071

    Google Scholar 

  • Huang S, Murphy L, Xu W (2018) Genes and functions from breast cancer signatures. BMC Cancer 18:473. https://doi.org/10.1186/s12885-018-4388-4

    Article  Google Scholar 

  • Huo Q, Li Z, Cheng L, Yang F, Xie N (2020) SIRT7 is a prognostic biomarker associated with immune infiltration in luminal breast cancer. Front Oncol 10:621. https://doi.org/10.3389/fonc.2020.00621

    Article  Google Scholar 

  • Jézéquel P, Frénel JS, Campion L, Guérin-Charbonnel C, Gouraud W, Ricolleau G, Campone M (2013) bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database bas060. doi: https://doi.org/10.1093/database/bas060

  • Jézéquel P, Gouraud W, Azzouz FB, Guérin-Charbonnel C, Juin PP, Lasla H, Campone M (2021) bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses. Database baab007. doi:https://doi.org/10.1093/database/baab007

  • Jing X, Liang H, Hao C, Hongxia L, Cui X (2019) Analyses of an epigenetic switch involved in the activation of pioneer factor FOXA1 leading to the prognostic value of estrogen receptor and FOXA1 co-expression in breast cancer. Aging 11(18):7442–7456. https://doi.org/10.18632/aging.102250

    Article  Google Scholar 

  • Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, Hanazawa T, Nomura F, Okamoto Y (2012) Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics 75(6):1803–1815. https://doi.org/10.1016/j.jprot.2011.12.018

    Article  Google Scholar 

  • Kim KM, Park SH, Bae JS, Noh SJ, Tao GZ, Kim JR, Kwon KS, Park HS, Park BH, Lee H, Chung MJ, Moon WS, Sylvester KG, Jang KY (2017) FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci Rep 7:3274. https://doi.org/10.1038/s41598-017-03639-3

    Article  Google Scholar 

  • Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, Matsubara H, Saito Y, Nakayama Y, Tomonaga T (2016a) Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci Rep 6:34472. https://doi.org/10.1038/srep34472

    Article  Google Scholar 

  • Kuga T, Sasaki M, Mikami T, Miake Y, Adachi J, Shimizu M, Saito Y, Koura M, Takeda Y, Matsuda J, Tomonaga T, Nakayama Y (2016b) FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes. Sci Rep 6:26557. https://doi.org/10.1038/srep26557

    Article  Google Scholar 

  • Lee KY, Liu YH, Ho CC, Pei RJ, Yeh KT, Cheng CC, Lai YS (2004) An early evaluation of malignant tendency with plectin expression in human colorectal adenoma and adenocarcinoma. J Med 35(1–6):141–149

    Google Scholar 

  • Leung CL, Green KJ, Liem RK (2002) Plakins: a family of versatile cytolinker proteins. Trends Cell Biol 12(1):37–45. https://doi.org/10.1016/S0962-8924(01)02180-8

    Article  Google Scholar 

  • Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu XS (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307

    Article  Google Scholar 

  • Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, Harris A, Goss P, Sotiriou C, Erlander M, Sgroi D (2008) A five gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–2608. https://doi.org/10.1158/1078-0432.CCR-07-5026

    Article  Google Scholar 

  • Nalla AK, Williams TF, Collins CP, Rae DT, Trobridge GD (2016) Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Mol Carcinog 55(11):1761–1771. https://doi.org/10.1002/mc.22425

    Article  Google Scholar 

  • Niwa T, Saito H, Imajoh-ohmi S, Kaminishi M, Seto Y, Miki Y, Nakanishi A (2009) BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Sci 100(11):2115–2125. https://doi.org/10.1111/j.1349-7006.2009.01282.x

    Article  Google Scholar 

  • Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay topredict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. https://doi.org/10.1056/NEJMoa041588

    Article  Google Scholar 

  • Pawar H, Kashyap MK, Sahasrabuddhe NA, Renuse S, Harsha HC, Kumar P, Sharma J, Kandasamy K, Marimuthu A, Nair B, Rajagopalan S, Maharudraiah J, Premalatha JS, Kumar KVV, Vijayakumar M, Chaerkady R, Keshava Prasad TS, Kumar RV, Kumar RV, Pandey A (2011) Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biol Ther 12(6):510–522. https://doi.org/10.4161/cbt.12.6.16833

    Article  Google Scholar 

  • Phung MT, Tin ST, Elwood JM (2019) Prognostic models for breast cancer: a systematic review. BMC Cancer 19(1):1–18

    Article  Google Scholar 

  • Rikardsen OG, Magnussen SN, Svineng G, Hadler-Olsen E, Uhlin-Hansen L, Steigen SE (2015) Plectin as a prognostic marker in non-metastatic oral squamous cell carcinoma. BMC Oral Health 15(1):1–8. https://doi.org/10.1186/s12903-015-0084-9

    Article  Google Scholar 

  • Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61:2537–2541

    Google Scholar 

  • Snijders AM, Lee SY, Hang B, Hao W, Bissell MJ, Mao JH (2017) FAM83 family oncogenes are broadly involved in human cancers: an integrative multi-omics approach. Mol Oncol 11(2):167–179. https://doi.org/10.1002/1878-0261.12016

    Article  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expressionprofiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272. https://doi.org/10.1093/jnci/djj052

    Article  Google Scholar 

  • Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  Google Scholar 

  • Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. https://doi.org/10.1038/415530a

    Article  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, YangF TD, Timmermans M, Meijer-van Gelder ME, Yu J (2005) Gene expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679. https://doi.org/10.1016/S0140-6736(05)17947-1

    Article  Google Scholar 

  • Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111(17):2477–2486. https://doi.org/10.1242/jcs.111.17.2477

    Article  Google Scholar 

  • Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145. https://doi.org/10.1200/JCO.2006.09.2775

    Article  Google Scholar 

  • World Health Organization (2021) https://www.who.int/news-room/fact-sheets/detail/breast-cancer accessed 08 September 2021

  • Yuan Y, Du C, Sun C, Zhu J, Wu S, Zhang Y, Ji T, Lei J, Yang Y, Gao N, Nie G (2018) Chaperonin-GroEL as a smart hydrophobic drug delivery and tumor targeting molecular machine for tumor therapy. Nano Lett 18(2):921–928. https://doi.org/10.1021/acs.nanolett.7b04307

    Article  Google Scholar 

  • Zheng H, Zhang G, Zhang L, Wang Q, Li H, Han Y, Xie L, Yan Z, Li Y, An Y, Dong H, Zhu W, Guo X (2020) Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front Oncol 10:68. https://doi.org/10.3389/fonc.2020.00068

    Article  Google Scholar 

  • Zhou L, Rueda M, Alkhateeb A (2022) Classification of breast cancer Nottingham Prognostic Index using High-Dimensional Embedding and Residual Neural Network. Cancers 14(4):934

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Life Science, Bangalore University for providing facilities and support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [T. P. N. HP]; Methodology: [MR, ML]; formal analysis and investigation: [RK, MR, ML]; writing—original draft preparation: [MR, ML, T. P. N. HP]; writing—review and editing: [MR, T. P. N. HP]; supervision: [T. P. N. HP].

Corresponding author

Correspondence to T. P. N. Hariprasad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics statement

This study does not involve any ethical issues.

Consent to participate (Ethics)

This study does not involve any animal or human subjects.

Consent to publish (Ethics)

This study does not require any consent to publish as no animal or human participants were involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.M.V., Likith, M., Kavya, R. et al. Plectin as a putative novel biomarker for breast cancer: an in silico study. Netw Model Anal Health Inform Bioinforma 11, 49 (2022). https://doi.org/10.1007/s13721-022-00392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-022-00392-0

Keywords

Navigation