Skip to main content
Log in

MicroRNA-gene regulatory network of TLR signaling in neuroinflammation-induced Parkinson’s disease: a bioinformatics approach

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second-most common neurodegenerative disease, affecting 10 million people worldwide. Neuroinflammation is one of the major pathologic processes in the development of PD. Neuroinflammation is promoted via the activation of TLRs present on immune cells in the brain. In addition, miRNA regulates TLR expression in neurodegenerative diseases. However, there is limited information on the miRNA that regulates TLR signaling genes in PD. In this study, we used GO, a bioinformatics tool that uses the representations for genes in an organism; PPI, which shows the physical interaction between proteins in an organism; and miRNet, a tool to navigate the complex relationships between miRNAs and their targets for deeper biologic understanding. To find out the potential TLR genes and regulatory miRNAs that play a role in neuroinflammation-induced PD. We acquired the gene expression profile, GSE26927, from the GEO Omnibus. DAVID bioinformatics and SHINY GO software were employed for GO analysis of DEGs, and the fold enrichment score for each pathway was verified. The TLR signaling pathways most deregulated genes (upregulated: log FC ≥ 2.0, downregulated: log FC ≤ – 2.0) were chosen for network analysis to identify crucial or hub genes. Subsequently, a miRNA-gene network was constructed using the miRNet tool. The foremost TLR signaling gene, distinguishing between PD and control samples, has been discerned. In the Protein–Protein Interaction (PPI) network, we identified genes with heightened connectivity, notably TLR4, exhibiting the highest degree of betweenness (degree = 22) in the TLR signaling pathway. Furthermore, in the miRNA-gene network, we unveiled the preeminent five miRNAs: hsa-miR-21-5p, hsa-miR-17-5p, hsa-miR-93-5p, hsa-miR-7-5p, and hsa-mir-92b-3p that interacted with the TLR signaling gene. The top ten TLR genes could be potential targets for new therapeutics. In addition, the identified potential miRNAs can strongly regulate the expression of TLR genes in PD and serve as therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The GEO database from NCBI (Gene Expression Omnibus database, https://www.ncbi.nlm.nih.gov/geo/) was used to access the GSE26927 dataset.

Abbreviations

PD:

Parkinson’s disease

TLRs :

Toll-like Receptors

VD:

Vascular dementia

DEGs:

Differentially Expressed Genes

GEO:

Gene Expression Omnibus

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

DAVID:

Database for Annotation, Visualization, and Integrated Discovery

STRING:

Search Tool for Recurring Instances of Neighbouring Genes

PPI:

Protein–Protein interaction

PRRs:

Pattern recognition receptor

TLR4 :

Toll-like receptor 4

MyD88 :

Myeloid differentiation primary response 88

IRAK1 :

Interleukin-1 receptor-associated kinase 1

TRAF6 :

Tumor necrosis factor receptor-associated factor 6

IRF7 :

Interleukin regulatory factor 7

FE:

Fold enrichment

References

  • Alvarez-Erviti L, Seow Y, Schapira AHV, Rodriguez-Oroz MC, Obeso JA, Cooper JM (2013) Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis 4(3):e545–e545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenas-Padilla M, Mata-Haro V (2018) Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases. Cent Eur J Immunol 43(4):482–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, Cherry JM, Ashburner M, Ball CA, Blake JA, Butler H et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T et al (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 9(5):e94839

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Cao C, Ding J, Cao D, Li B, Wu J, Li X et al (2022) TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis 171:105809

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Zhou G, Soufan O, Xia J (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 48(W1):W244–W251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J-Y, Park HR, Lee S-J, Lee S-H, Kim JS, Jung Y-S et al (2013) Elevated TRAF2/6 expression in Parkinson’s disease is caused by the loss of Parkin E3 ligase activity. Lab Investig 93(6):663–676

    Article  CAS  PubMed  Google Scholar 

  • Conte C, Ingrassia A, Breve J, Bol JJ, Timmermans-Huisman E, van Dam A-M et al (2023) Toll-like receptor 4 is upregulated in Parkinson’s disease patients and co-localizes with pSer129αSyn: a possible link with the pathology. Cells 12(10):1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F (2011) The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflamm 8(1):1–12

    Article  Google Scholar 

  • Durrenberger PF, Fernando FS, Magliozzi R, Kashefi SN, Bonnert TP, Ferrer I et al (2012) Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe study. Acta Neuropathol 124:893–903

    Article  PubMed  Google Scholar 

  • Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B et al (2015) Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm 122:1055–1068

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Jana M, Majumder M, Mondal S, Roy A, Pahan K (2021) Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat Commun 12(1):5382

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J et al (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319

    Article  CAS  PubMed  Google Scholar 

  • He R, Yan X, Guo J, Xu Q, Tang B, Sun Q (2018a) Recent advances in biomarkers for Parkinson’s disease. Front Aging Neurosci 10:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhong W, Zhang M, Zhang R, Hu W (2018b) P38 mitogen-activated protein kinase and Parkinson’s disease. Transl Neurosci 9(1):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari A, Yazdanpanah N, Rezaei N (2022) The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation 19(1):1–21

    Article  Google Scholar 

  • Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H et al (2014) Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. Int J Nanomed 9(1):2677–2687

    Google Scholar 

  • Hunt GP, Grassi L, Henkin R, Smeraldi F, Spargo TP, Kabiljo R et al (2022) GEOexplorer: a webserver for gene expression analysis and visualisation. Nucleic Acids Res 50(W1):W367–W374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung K, Friede T, Beißbarth T (2011) Reporting FDR analogous confidence intervals for the log fold change of differentially expressed genes. BMC Bioinform 12:1–9

    Article  Google Scholar 

  • Kaur R, Mehan S, Singh S (2019) Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 40:13–23

    Article  PubMed  ADS  Google Scholar 

  • Kouli A, Horne CB, Williams-Gray CH (2019) Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav Immun 81:41–51

    Article  CAS  PubMed  Google Scholar 

  • Lazdon E, Stolero N, Frenkel D (2020) Microglia and Parkinson’s disease: footprints to pathology. J Neural Transm 127:149–158

    Article  PubMed  Google Scholar 

  • Lee JH, Kim HJ, Kim JU, Yook TH, Kim KH, Lee JY et al (2021) A novel treatment strategy by natural products in NLRP3 inflammasome-mediated neuroinflammation in Alzheimer’s and Parkinson’s disease. Int J Mol Sci 22(3):1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J et al (2012) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Zhang L, He Y, Sun H, Tong W, Xu Y et al (2020) Immune-associated biomarkers for early diagnosis of Parkinson’s disease based on hematological lncRNA–mRNA co-expression. Biosci Rep 40(12):BSR20202921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xia Y, Yin S, Wan F, Hu J, Kou L et al (2021) Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease. Front Immunol 12:719807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Bi G, Han S, Huang R (2022) MicroRNAs play a role in Parkinson’s disease by regulating microglia function: from pathogenetic involvement to therapeutic potential. Front Mol Neurosci 14:744942

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian H, Wang B, Lu Q, Chen B, Yang H (2021) LINC00943 knockdown exerts neuroprotective effects in Parkinson’s disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genom 43:797–805

    Article  CAS  Google Scholar 

  • Liu Z, Shen C, Li H, Tong J, Wu Y, Ma Y et al (2023) NOD-like receptor NLRC5 promotes neuroinflammation and inhibits neuronal survival in Parkinson’s disease models. J Neuroinflamm 20(1):1–21

    Article  Google Scholar 

  • Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S-X, Seo BA, Kim D, Xiong Y, Kwon S-H, Brahmachari S et al (2021) Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in α-synuclein-based mouse models of Parkinson’s disease. J Proteome Res 20(7):3428–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maatouk L, Compagnion A-C, Sauvage M-AC, Bemelmans A-P, Leclere-Turbant S, Cirotteau V et al (2018) TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nat Commun 9(1):2450

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A (2021) Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson’s disease. Nat Commun 12(1):3101

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Nemutlu Samur D, Akçay G, Yıldırım S, Özkan A, Çeker T, Derin N et al (2022) Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson’s disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology 208:108977

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J et al (2021) miR-21 and miR-146a: the microRNAs of inflammaging and age-related diseases. Ageing Res Rev 70:101374

    Article  CAS  PubMed  Google Scholar 

  • Pajares M, Rojo AI, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9(7):1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Z, Pang H, Qian LI, Yang S, Wang T, Zhang W et al (2007) MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 55(13):1362–1373

    Article  PubMed  Google Scholar 

  • Sharma S, Lu H-C (2018) microRNAs in neurodegeneration: current findings and potential impacts. J Alzheimer’s Dis Park. https://doi.org/10.4172/2161-0460.1000420

    Article  Google Scholar 

  • Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12

    Article  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(suppl_1):D561–D568

    PubMed  PubMed Central  Google Scholar 

  • Tan E-K, Chao Y-X, West A, Chan L-L, Poewe W, Jankovic J (2020) Parkinson disease and the immune system—associations, mechanisms and therapeutics. Nat Rev Neurol 16(6):303–318

    Article  PubMed  Google Scholar 

  • Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB et al (2023) Integration of miRNA’s theranostic potential with nanotechnology: promises and challenges for Parkinson’s disease therapeutics. Mech Ageing Dev 211:111800

    Article  CAS  PubMed  Google Scholar 

  • Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905

    Article  PubMed  Google Scholar 

  • Vallelunga A, Iannitti T, Capece S, Somma G, Russillo MC, Foubert-Samier A et al (2021) Serum miR-96-5P and miR-339-5P are potential biomarkers for multiple system atrophy and Parkinson’s disease. Front Aging Neurosci 13:632891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhan Y, Ren N, Wang Z, Zhang Q, Wu S et al (2018) Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration. J Appl Toxicol 38(5):665–677

    Article  PubMed  Google Scholar 

  • Wang L, Yang J-W, Lin L-T, Huang J, Wang X-R, Su X-T et al (2020) Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF-κB signaling pathway. Oxid Med Cell Longev 2020:1–15

    Article  Google Scholar 

  • Yelamanchili SV, Lamberty BG, Rennard DA, Morsey BM, Hochfelder CG, Meays BM et al (2015) MiR-21 in extracellular vesicles leads to neurotoxicity via TLR7 signaling in SIV neurological disease. PLoS Pathog 11(7):e1005032

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Wang X, He X, Wang Y, Gao S, Ren L et al (2016) Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones 21:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad for providing the necessary facilities and resources to prepare this manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar Khatri.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Khatri, D.K. MicroRNA-gene regulatory network of TLR signaling in neuroinflammation-induced Parkinson’s disease: a bioinformatics approach. Netw Model Anal Health Inform Bioinforma 13, 7 (2024). https://doi.org/10.1007/s13721-024-00445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-024-00445-6

Keywords

Navigation