Skip to main content
Log in

An efficient content-based medical image indexing and retrieval using local texture feature descriptors

  • Regular Paper
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

This paper presents an efficient medical image indexing and retrieval method using two new proposed feature descriptors named as threshold local binary AND pattern (TLBAP) and local adjacent neighborhood average difference pattern (LANADP). In basic local binary pattern (LBP), every center pixel is considered as a threshold to generate the binary pattern, whereas in the proposed method a threshold value is calculated using the highest pixel intensity of the neighboring pixels to construct the threshold local binary pattern (TLBP). Thereafter, logical AND operation is performed between LBP and TLBP pattern to produce TLBAP pattern. The objective of the other feature descriptor named here as LANADP is to explore the relationship of neighboring pixels with its adjacent neighbors in vertical, horizontal and diagonal directions. In the proposed work, both TLBAP and LANADP features are concatenated in the form of the histograms to generate the final features vector and the performance of the system is evaluated. To test the effectiveness of the proposed method, three publicly available medical image databases, namely OASIS-MRI brain images, NEMA-CT images and VIA/ELCAP-CT images, are used. Two measures, viz. average retrieval precision and average retrieval rate, have been used to evaluate the performance of the method proposed which is further compared with some existing local pattern-based methods. The experimental results show that the proposed methods give better results as compared to the other existing methods considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3(6):610–621

    Article  Google Scholar 

  2. Palm C (2004) Color texture classification by integrative co-occurrence matrices. J Pattern Recognit 37(5):965–976

    Article  Google Scholar 

  3. Partio M, Cramariuc B, Gabbouj M, Visa A (2002) Rock texture retrieval using gray level co-occurrence matrix. In: Proceedings of the 5th Nordic signal processing symposium, vol 75. Citeseer

  4. Zhang J, Li GL, He SW (2008) Texture-based image retrieval by edge detection matching GLCM. In: Proceedings of 10th international conference on high performance computing and communications. IEEE, Dalian, China, pp 782–786

  5. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. J Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  6. Zhao G, Ahonen T, Matas J, Pietikainen M (2011) Rotation-invariant image and video description with local binary pattern features. IEEE Trans Image Process 21(4):1465–1477

    Article  MathSciNet  Google Scholar 

  7. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  8. Hamouchene I, Aouat S (2014) A new texture analysis approach for iris recognition. In: AASRI Procedia vol 9, pp 2–7

    Article  Google Scholar 

  9. Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Article  Google Scholar 

  10. Takala V, Ahonen T, Pietikäinen M (2005) Block-based methods for image retrieval using local binary patterns. In: Lecture notes in computer science, vol 3540, pp 882–891

    Chapter  Google Scholar 

  11. Jirí T, Matas J (2010) Extended set of local binary patterns for rapid object detection. In: Proceedings of the computer vision winter workshop

  12. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

  13. He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16:595–607

    Article  MathSciNet  Google Scholar 

  14. Liao S, Zhu X, Lei Z, Zhang L, Li SZ (2007) Learning multi-scale block local binary patterns for face recognition. In: Lee SW, Li SZ (eds) Advances in biometrics, Lecture notes in computer science, vol 4642. Springer, Berlin, pp 828–837

    Google Scholar 

  15. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  16. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou SK, Zhao W, Tang X, Gong S (eds) Analysis and modeling of faces and gestures AMFG 2007. Lecture notes in computer science, vol 4778. Springer, Berlin, Heidelberg, pp 168–182

    Google Scholar 

  17. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  18. Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  19. Murala S, Wu QMJ (2014) MRI and CT image indexing and retrieval using local mesh peak valley edge patterns. Signal Process Image Commun 29(3):400–409

    Article  Google Scholar 

  20. Murala S, Wu QMJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514

    Article  Google Scholar 

  21. Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265

    Article  MathSciNet  Google Scholar 

  22. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional localextrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 3:191–203

    Article  Google Scholar 

  23. Verma M, Raman B, Murala S (2015) Wavelet based directional local extrema patterns for image retrieval on large image database. In: Second international conference on advances in computing and communication engineering, Dehradun, India, pp 649–654. https://doi.org/10.1109/ICACCE.2015.81

  24. Reddy PVB, Reddy ARM (2014) Content based image indexing and retrieval using directional local extrema and magnitude patterns. AEU-Int J Electron Commun 68(7):637–643

    Article  Google Scholar 

  25. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219

    Article  Google Scholar 

  26. Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans Image Process 24(12):5892–5903. https://doi.org/10.1109/TIP.2015.2493446

    Article  MathSciNet  MATH  Google Scholar 

  27. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  28. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

    Article  Google Scholar 

  29. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Kalra PK, Peleg S (eds) Computer vision, graphics and image processing. Lecture notes in computer science, vol 4338. Springer, Berlin, Heidelberg, pp 58–69

    Google Scholar 

  30. Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Article  Google Scholar 

  31. Verma M, Raman B (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77(10):11843–11866

    Article  Google Scholar 

  32. Lowe DG (1999) Object recognition from local scale-invariant features. In: International conference on computer vision, vol 2. IEEE, pp 1150–1157

  33. Bay H, Tuytelaars T, Van GL (2006) Surf: Speeded up robust features. In: European conference on computer vision. Springer, pp 404–417

  34. Bala A, Kaur T (2016) Local texton XOR patterns: a new feature descriptor for content based image retrieval. Eng Sci Technol Int J 19(1):101–112

    Article  Google Scholar 

  35. Singh C, Kaur KP (2016) A fast and efficient image retrieval system based on color and texture features. J Vis Commun Image R 41:225–238

    Article  Google Scholar 

  36. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open access series of imaging studies (OASIS): crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507

    Article  Google Scholar 

  37. NEMA-CT image database. ftp://medical.nema.org/medical/Dicom/Multiframe/CT. Accessed 3 Aug 2017

  38. VIA/I-ELCAP CT Lung Image Dataset. http://www.via.cornell.edu/databases/lungdb.html. Accessed 21 Oct 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Roy, S. & Purkayastha, D. An efficient content-based medical image indexing and retrieval using local texture feature descriptors. Int J Multimed Info Retr 8, 217–231 (2019). https://doi.org/10.1007/s13735-019-00176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-019-00176-9

Keywords

Navigation