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Abstract By using a high-variability sample of real

agrarian enterprises previously classified into two classes

(efficient and inefficient), a comparative study was car-

ried out to demonstrate the classification accuracy of lo-

gistic regression algorithms based on evolutionary pro-

ductunit neural networks. Data envelopment analysis

considering variable returns-to-scale (BBC-DEA) was

chosen to classify selected farms (220 olive tree farms in

dry farming) as efficient or inefficient by using surveyed

socio-economic variables (agrarian year 2000). Once the

sample was grouped by BCC-DEA, easy-to-collect de-

scriptive variables (concerning the farm and farmer)

were then used as independent variables in order to find

a quick and reliable alternative for classifying agrarian

enterprises as efficient or inefficient according to their

technical efficiency. Results showed that our proposal is
very promising for the classification of complex struc-

tures (farms).
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1 Introduction

The logistic regression (LR), is a special case of general-

ized linear model methodology where the assumptions

of normality and the constant variance of the residu-

als are not satisfied. In this paper LR is improved (to

include the nonlinear effects of the covariates) taking

into account the combination of linear and product-

unit models [6,10,20,23]. Product-unit functions (PU)

are nonlinear basis functions (mathematical transfor-

mations of the input variables) designed using the prod-

uct of the covariates raised to arbitrary powers (real

values). The nonlinear basis functions of the proposed

model correspond to a special class of feed-forward neu-

ral networks, namely product-unit neural networks (PU-

NN). Introduced by Durbin and Rumelhart [6] and de-

veloped recently where product-unit neural networks

(PUNN) express strong covariate interactions. In this

way, the LR model can be structured, on one hand, with

all covariate product units: logistic regression by the

product-unit model (LRPU) or, on the other, with both

PU and initial covariates: logistic regression by the ini-

tial and the product-units covariates model (LRIPU).

The objective of this paper was to check the ac-

curacy and interpretability of our hybrid classification

algorithms as an alternative for classifying sets of obser-

vations in an uncertain environment where a great deal

of interaction between our input variables was expected.

According to this goal, LRPU and LRIPU algorithms

were compared with LR and linear discriminant analy-

sis (LDA), selecting a relevant problem in the agrarian

economy framework: the productive efficiency of agrar-

ian enterprises (olive tree farms).

The olive farm has been selected not only for its

enormous relevance in the Andalusian economy but also

because of its role in the sustainable development and
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in the reduction of the loss of population in the ru-

ral areas. Nowadays the European Union (EU) agrar-

ian sector is more or less subsidised, and this circum-

stance requires it to be socially committed; that is, its

financial support should be socially justified in terms of

employment, environmental maintenance, food quality,

efficiency, best practices and so on [9,22] . So a sub-

sidised farm should aspire to efficiency in a sustainable

environment. According to the productive approach to

technical efficiency, the farm is mainly devoted to pro-

ducing outputs to be sold in the market to obtain a

financial profit. A productively efficient farm implies

using input that reasonably avoids over-utilization [24].

Data Envelopment Analysis (DEA) was applied to

determine the technical efficiency of Decision Making

Units (DMUs, farms) without previous assumptions like,

for example, the knowledge of production functions which

is often unknown [1–3,5]. In order to apply DEA it is

necessary to know the exact values of all the inputs con-

sumed (i.e. fertilizers, pesticides, etc.) for every DMU

as well as the outputs produced (i.e. revenues). How-

ever, a key advantage of DEA over other approaches like

the econometric Stochastic Production Frontier (SPF)

is that DEA does not require any pre-described struc-

tural relationship between the inputs and resultant out-

puts, so allowing greater flexibility in the frontier esti-

mation. It can also accommodate multiple outputs into

the analysis. A disadvantage of the technique, nonethe-

less, is that it does not account for random variation in

the output, and so attributes any apparent shortfall in

output to technical inefficiency. In spite of the main ob-

jective of this work is focused in forecasting with simple

and only a few information the efficiency of a DMU and

is not so important the methodology used to compute

the technical efficiency.

In this paper, 220 olive-tree farms in dry farming

were selected and grouped into efficient and inefficient

groups by DEA using the socio-economic variables sur-

veyed (which supposes a great effort in terms of time

and economical cost). The division or classification ob-

tained was then used to check our classification algo-

rithms but now considering only easy-to-collect vari-

ables describing the structure of the farm and the farmer.

Our hypothesis was that it was possible to classify farms

according to their efficiency by using only these descrip-

tive and easy-to collect variables as the independent

ones(instead of difficult-to-obtain and expensive socio-

economic ones). Obviously, all of them were different

from those employed in DEA.

The classification results obtained using these vari-

ables could prove to be especially relevant for decision

makers (politicians, rural development program man-

agers, etc.). They who could use this classification for

rural planning purposes: for example, to identify those

farms that should be the principle aid recipients due to

their superior or inferior productive efficiency and com-

pare them to the rest in order to improve the manage-

ment and degree of competitiveness of the less efficient

ones.

This paper is structured as follows: in Section 2 the

classification methods to be used for determining farm

efficiency were described; Section 3 briefly describes the

DEA model; Section 4 presents the set of variables se-

lection both for DEA model and for the machine learn-

ing models, those variables referring to a very relevant

and strategic agrarian group in Andalusia (olive-tree

farms in dry farming) and summarizes efficiency results

in DEA models; classification results are statistically

described in Section 5 together with the most relevant

findings obtained using our hybrid classification mod-

els. Finally, some illustrative conclusions are drawn in

Section 6.

2 Classification methods

2.1 Logistic regression with product-unit covariates

In classification of real problems, it is not possible to

assume that the generic function for determining the

best classifier is always linear. According to that, sev-

eral approaches for modelling non-linear systems have

been proposed recently: the method of fractional poly-

nomials and the method of fitting a generalized additive

model.

In this study, based on the latest researched models,

we propose a new alternative for a non-linear function

f(x,θ) by the inclusion of product-unit functions in the

structure of the function f(x,θ) establishing therein

two parts: the first one is linear (the covariables of the

LR) and the other, non-linear, made up of covariates

formed as product-unit functions, which build the non-

linear part of the function defined as:

Bj(x,wj) =

(
k∏

i=1

x
wjl

i

)
, (1)

where j ranges from 1 to m being m the number nodes

in the hidden layer, so that the activation of the j-th

node in the hidden layer is given by (1). In this way, a

logistic regression by product-units and initial covari-

ates model (LRIPU) is given in matrix form by:

f(x, θ) = xTα + BT (x,W)β (2)
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where x = (1, x1, . . . , xp)T (p being the number of in-

puts), B(x,W) = [B1(x,w1), . . . , Bm(x,wm)]T with

Bj(x,wj) defined in (1), and the parameters θ = (α,β,

W), where α = (α0, α1, . . . , αp)T , β = (β1, . . . , βm)T

and W = (w1, . . . ,wj) being wl = (wj1, . . . , wjp)T in

which wjl ∈ R . The LRPU model only includes the

second term of (2) (product-units). So the conditional

distribution is now:

p(x, θ) =
exp(xTα + BT (x,W)β)

1 + exp(xTα + BT (x,W)β)
(3)

In this case, the decision boundaries are generalized

surface response models.

We define a pattern as a p-dimensional feature vec-

tor x ∈ X ⊆ Rp and a class label y ∈ Y. A training

dataset D consist on n patterns

D = {(X,Y) = (xi, yi) : xi ∈ X , yi ∈ Y (i = 1, . . . , n)} ,

with xi = (xi1, xi2, . . . , xip)T and yi ∈ {0, 1}. We use

the method of maximum likelihood to estimate the pa-

rameters α and β –second step– because W was pre-

viously estimated by the evolutionary algorithm (EA)

in the first step in the linear predictor in the linear

predictor xTα+BT (x,W)β). Each sample observation

follows a Bernouilli distribution, there, since the obser-

vations are independent, the likelihood function is:

L(y1, y2, . . . , yn) =

n∏
i=1

pyi

i (1− pi)1−yi , (4)

and the negative log-likelihood for those observations

is:

lnL(y1, y2, . . . , yn,α, θ) =

=

n∑
i=1

[
yif(xi,α, θ)− ln(1 + ef(xi,α,θ)

]
(5)

2.2 The estimation of coefficients

The methodology proposed to estimate both LRPU and

LRIPU parameters is a three step procedure based on

the combination of global exploration algorithm (an

evolutionary algorithm, EA) and a local optimization

procedure (carried out by a maximum-likelihood opti-

mization method). First the parameters of the PU are

determined by the EA, second, the product-units (non-

linear terms) are added to the lineal LR model and the

LR model is trained, and third the covariables of the

model are pruned.

The first step consist on the application of the EA

to design the structure and learning of the weights of

a PU neural network. It begins the search with an ini-

tial population, and at each iteration, the population is

updated using a population-update algorithm.

The evolutionary process determines the number m

of potential basis functions of the model and the cor-

responding vectors wj of exponents. The algorithm of

our proposed EA is the following (details can be found

in [10,11]):

1. Generate a random initial population of size P .

2. Repeat the following steps until the stopping crite-

rion is fulfilled:

(a) Calculate the fitness of every individual in the

population and rank the individuals regarding

their fitness.

(b) The best individual is copied into the new pop-

ulation (elitism).

(c) The best 10% percent of individuals of the pop-

ulation are replicated and substitute the worst

10% individuals.

(d) Apply parametric mutation to the best 10% of

individuals.

(e) Apply structural mutation to the remaining 90%

of individuals.

For this binary classification problem we consider

the mean squared error (MSE) of an individual g of the

population as:

MSE(g) =
1

N

N∑
i=1

(yi − ŷi)2, (6)

being yi and ŷi the actual and predicted values (0 or

1 in the binary case), and N the number of training

patterns. The output values are estimated after a soft-

max transformation of the f(x, θ) output and the fit-

ness function is defined with a strictly decreasing trans-

formation of the MSE:

A(g) =
1

1 +MSE(g)
. (7)

In the present work, the algorithm parameters of

the exponents wji are randomly initialized within the

interval (−1, 1) and the coefficients βkj in the inter-

val (−5, 5), the maximum number of hidden nodes is

m = 4 and the size of the population P = 1000. The

number of nodes that can be added or removed in a

structural mutation is one or two. The number of con-

nections that can be added or removed in a structural

mutation is a number from one to six. The stopping

criterion is reached whenever one of the following two

conditions is fulfilled: i) where there is no improvement

during 20 generations either in the average performance

of the best 20% of the population or in the fitness of
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the best individual; or ii) the algorithm achieves 100

generations.

Once the basis functions are determined by the EA,

in a second step, we consider a transformation of the

input space by adding the nonlinear transformations

of the input variables given by the basis functions ob-

tained by the EA. The model is linear in these new

variables together with the initial covariates. Numeri-

cal search methods could be used to compute maximum

likelihood estimates (MLE) α̂ and β̂.

However, it turns out that we can use iteratively

reweighed least squares (IRLS) to actually find the MLE.

We use the SPSS computer program that implements

IRLS for the LR model. In order to define the LR us-

ing only product units as covariates, the LRPU model

simplifies equation (2) establishing α = (α0, 0, . . . , 0)T ,

in this form, we obtain logistic regression models where

the linear and non-linear structure of the function f(x, θ)

has been modeled only with associated covariates to un-

derlying interactions within the initial covariates.

The third step is a backward-step procedure where

the covariates of the model obtained in the second step

are pruned sequentially (starting with the full model

with all the covariates) until further pruning do not

improve the fit. At each phase, the least significant co-

variate is deleted (the greatest critical p− value in the

hypothesis test) to predict the response variable, where

the associated coefficient equal to zero is the hypothesis

to be contrasted. The procedure finishes when all tests

provide p − values smaller than the fixed significance

level, α, and the model obtained fits well.

3 Technical efficiency: the DEA model

In order to evaluate the relative performance of a set

of decision making units (DMU) that produce multi-

ple outputs consuming multiple inputs, DEA methods

are well-known as non-parametric, data-oriented ap-

proaches, that have developed greatly since the semi-

nal paper of Charnes et al. [3]. DEA does not need the

a priori assumptions associated with other approaches

for performance appraisal such as, for example, statisti-

cal regression ones. Recent relative efficiency definitions

assume that a DMU can be considered 100% efficient

in a set of selected DMU if, and only if, according to

existing information (inputs and outputs), there is not

any real evidence that some inputs or outputs could

be improved without worsening any of their inputs or

outputs. Based on this definition, many different DEA

models have been developed, including the economic

concept of returns to scale. Returns to scale can be

considered variable when a proportional increase or de-

crease in all the inputs implies more (increasing returns

to scale) or less (decreasing returns to scale) than pro-

portional input increase or decrease. DEA models im-

mediately assume this realistic approach [2,5].

If analyse a set of DMU where eachDMUj ,which(j =

1, 2, ..., n) produces identical outputs in different quan-

tities, yrj(r = 1, 2, ..., s) and consumes also identical in-

puts in different amounts, xij(i = 1, 2, ...,m), according

to the standard variable returns to scale model (BCC-

DEA), the technical efficiency of a selected DMU can be

evaluated using the primal “envelopment form” using

the following linear model:

min θ0 − ε

(
m∑
i=1

s−i +

s∑
r=1

s+r

)
(8)

subject to

θ0xi0 =

n∑
j=1

xijλj + s−i for i = 1, . . . ,m (9)

yr0 =

n∑
j=1

yrjλj − s+r for r = 1, . . . , s (10)

n∑
j=1

λj = 1 where λj , s
−
i , s

+
r ≥ 0,∀i, r, j, (11)

ε being a non-Archimedean element smaller than any

positive real number, λj the model variables and s−i
and s+r the corresponding slacks.

According to model [9], a DMU is efficient if and

only if θ̂0 = 1 and all slacks are zero. The input-oriented

BCC model, that is the most realistic approach in the

agrarian sector, analyses the possibility of reducing in-

put consumption to produce the same amount of out-

puts in every DMU analysed [2,5]. Once the DEA model
is solved, it assigns a score to the patterns. Value one

means that the farm is technically efficient, and positive

values less than one to the non-efficient farms. Then,

with DEA scoring we can classify the DMU set (agrar-

ian business) in two groups: efficient (Y = 1 or posi-

tive class in the classification problem) and inefficient

(Y = 0 or negative class in the classification problem).

In this paper, the relative technical efficiency of olive

tree farms in dry farming was calculated using survey-

based socio-economic variables (see Table 1).

4 Experimental design: selection and

justification of the variable and decisional

framework

The samples of real agrarian enterprises were randomly

selected to be representative at a provincial level ac-

cording to the Andalusian distribution of farm sizes

and agrarian activities: crops and cattle [9,19,22]. The
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Table 1 Socio-economic variables of surveyed olive tree farms to calculate productive efficiency using BCC-DEA (source:
CAC 3/2001 project)

# Variable description abbrev. DEA

1 Energy structural costs (electricity and liquid and solid fuels (102 e) SC1 Input
2 Other structural costs except for structural hand labour (102 e) SC2 Input
3 Taxes (102 e) SC3 Input
4 Structural hand labour cost (102 e) SHL Input
5 Structural revenues including non-agrarian revenues (102 e) SR Output
6 Family hand labour over total hand labour on the farm (%). FHL Input
7 Input costs of the farm crops (102 e) ICO Input
8 Other costs of the farm crops (102 e) CCO Input
9 Total hand labour costs of farm crops (102 e) HLC Input
10 Total crop revenues (102 e) CR Output
11 Total crop subsidies (102 e) SUB Input

Table 2 Basic statistics of descriptive variables in total sam-
ple

Variable Mean Standard
Deviation

Variation
Coefficient

CA 17.68 27.61 156.00%
PO 87.76 25.61 29.00%
NC 1.40 0.91 65.00%
YL 3.29 2.27 69.00%
HL 45.02 30.51 68.00%
TR 0.75 0.92 123.00%
ST 2.48 1.35 55.00%
AG 2.15 0.89 42.00%
HE 539.9 202.44 37.00%
SL 76.03 25.77 34.00%
ER 37.25 29.81 80.00%

socio-economic structure of these agrarian enterprises,

obtained from very detailed survey questionnaires, at-

tempted to achieve the greatest possible precision in

determining their productive structure, costs and rev-

enues.

Our classification problem can be structured in three

sequential phases: In the first, olive tree farms in the

dry farming set from the original databases were se-

lected in order to analyse the potential to reproduce ef-

ficiency results obtained from BCC-DEA of LR, LRPU

and LRIPU models compared to LDA. This strategic

farms group is nowadays one of the most important

ones in Andalusia1. The sample analysed was made up

of 220 complex farms spread all throughout Andalusia.

In the second phase, BCC-DEA was chosen to calcu-

late the productive efficiency, relative, of the sample

considered. Only socio-economic variables (11 in total)

were taken into account as stated in Table 1 (9 DEA

1 These farms represent 59% of Spanish agricultural land
and 27% of that in the EU. Moreover. Andalusia is the main
olive-producing region in Spain yielding more than 70% of the
total production. There are whole areas devoted to the olive
oil sector, which represents 30% of Andalusian agricultural
employment.

inputs, agrarian resources, xij , and two DEA outputs,

yrj , economic results). The set of variables selected to

calculate farm efficiency using BCC-DEA are very dif-

ficult to collect in the field and relatively difficult to

calculate. In the third phase, the classification was car-

ried out using DEA. From a productive point of view,

61 olive tree farms (27.73%) were considered efficient

(Y = 1). The resulting pre-classification produced a

non-balanced structure, a circumstance that added an

additional difficulty to the inner statistical variability

of the training samples (see Table 2) that is reproduced

in the generalization ones.

Once the original set of farms was divided into two

groups, efficient or inefficient, a selected easy-to-collect

set of variables in the field that describe these farms

and the corresponding farmers (see Table 3 for variables

description) was considered as the input group of vari-

ables. The productive efficiency of each DMU (farm)

was the dependent variable, for classification purposes.

In the classification process, ten random different train-

ing/generalization samples (and hold-out procedure) were

designed using approximately 60% of the farms for train-

ing and the remainder 40% for generalization..

In order to evaluate and compare the precision of the

proposed classification models, the Correct Classifica-

tion Rate (CCR), Producer’s Accuracy (PA) and User’s

Accuracy (UA) measures were selected [3]. The first one

(CCR) can be defined as the percentage of total correct

classified observations with respect to the total number

of observations. The PA is the number of farms cor-

rectly classified as positive class (efficient class, Y = 1)

with respect to the total number of farms that belongs

to that class (generally known as precision). UA is cal-

culated as the number of farms correctly classified as

positive class with respect to the total number of farms

that was classified as that class by the algorithm (also

known as recall). The best classification method, is that
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Table 3 Descriptive variables of surveyed olive-tree farms in dry farming (sources: 1CAC 3/2001 project and 2SIMA [4]

# Variable description abbrev.

1 Region. Sample design. RE1

2 Total cultivated area of the farm (hectares). CA1

3 Percentage of olive tree area over CA (%). PO1

4 Number of farm crops. NC1

5 Olive tree yield (ton of olives/hectare). YL1

6 Percentage of non-family hand labour cost over total production costs of the farm (%). HL1

7 Does the manager or the family have non-agrarian revenues? (Yes or No). NRE1

8 Number of farm tractors. TR1

9 Training level of the farm manager. (1: None, 2: Basic, 3: High school level, 4: Professional training, 5: First
university degree, 6: University master o higher degree).

ST1

10 Does the manager have agrarian studies? (Yes or No). AS1

11 Farmer age (<40 years old, between 40 and 55, between 55 and 65 and >65 years old). AG1

12 Manager sex (1: Male, 2: Female). SX1

13 Does the farm manager sell directly to consumers? (Yes or No). CON1

14 Does the farm manager sell directly to wholesalers? (Yes or No). WH1

15 Does the farm manager sell directly to retailers? (Yes or No). RT1

16 Does the farm manager sell directly to industry? (Yes or No). IN1

17 Is the farmer a cooperative member? (Yes or No). COO1

18 Average altitude of the farm municipality (meters over sea level). HE2

19 Average slope of the farm municipality (%). SL2

20 Percentage of agrarian soils in the farm municipality where erosion can be considered moderate (%). ER2

where both PA and UA values are equal to one, imply-

ing that CCR is equal to one.

5 Results

In order to compare the LDA, LR, LRPU and LRIPU

models, values of CCR, PA and UE for training and

generalization sets are calculated.

5.1 Analysis of performance of LR, LRPU and LRIPU

models

Based on our decisional framework and considering pre-

viously and randomly (geographical conglomerates) de-

signed samples, we explain our classification into ef-

ficient and non-efficient farms through three logistic

models: standard LR, LR with product-unit covariates

(LRPU) and LR with product-unit and initial covari-

ates (LRIPU). In this way, we can observe the improve-

ment of the hybrid model LRIPU in the different met-

rics. The results are summarized in Table 4.

In the majority of the selected ten samples, the CCR

was greater than or equal to 70%, which is an excel-

lent classification ratio considering the complexity of

the olive-tree farm database (see Table 3).

The best mean results obtained in CCR were reached

by LRIPU models 81.2% in training set and 75,2% in

the generalization set.

Regarding PA metric, inefficient farms (Y = 0) were

more easily recognized in general than efficient ones

(Y = 1). This is a problem that offen rises in imbal-

anced problems, were the worst performance is achieved

for the less populated classes [14,18]. In the former case

(inefficient), the best mean percentage was for LRPU,

with values 96.1% and 93.2% (respectively for training

and generalization sets). However, for efficient farms,

these rates fell to 46.3% and 31.6% with the LRIPU

methodology. We can conclude that LRPU was better

recognising the inefficient group and LRIPU was better

in the efficient group classification (the most difficult

patterns to identify). So we can observe that non lin-

ear models (LRPU and LRIPU) improve classification

of LR for metric PA. Considering results of metric UA

(classify inefficient farms), the three methods compared

present results greater than 78% in training and a 75.9%

in generalization. Considering efficient farms (Y = 1),

UA results reveals worse performance, over (76-78)% in

training and (55-64)% in generalization, which means

that the selected algorithms were sensitive to the sam-

ple design, probably related to the above-mentioned im-

balanced structure of the data analysed. In all the cases

the best methodology considering this metric is LRIPU.

Finally, since LRIPU and LRPU have shown the

best PA and UA absolute results compared with LR, it

makes sense to consider nonlinear variables in the LR

model.
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Table 4 Mean % of PA, UA and CCR (in 10 hold-out) for training and generalization sets using, LR, LRPU and LRIPU
models. (best results in bold)

Training set PA Generalization set PA
Class\Method LR LRPU LRIPU LR LRPU LRIPU
Y = 0 Inefficient 95.2 96.1 95.2 87.7 93.2 91.9
Y = 1 Efficient 39.6 33.3 46.3 19.2 27.0 31.6

Training set UA Generalization set PA
Class\Method LR LRPU LRIPU LR LRPU LRIPU
Y = 0 Inefficient 80.2 78.7 80.5 75.9 75.9 77.8
Y = 1 Efficient 76.8 76.4 77.4 54.9 63.4 63.8

Total Farms 79.7 78.4 81.2 68.8 74.4 75.2

5.2 Comparison of the proposed method to reference

machine learning algorithms

In order to test the reliability of both the LR and product-

unit (LRPU and LRIPU) classification methods, a se-

lected set of different methodologies have been chosen

to classify our database. All algorithms but LDA (which

was applied with SPSS) are part of WEKA machine

learning software release 3.4.0. [12]. We have selected a

set of popular machine learning methods: LDA [15] a

method developed to address the classification problem

from a linear multidimensional perspective; IB1, an al-

gorithm belonging the k-Nearest-Neighbour family pro-

posed by [16]; a multilayer Perceptron neural network

(MLP) that uses a back-propagation learning algorithm

[13]; a neural network technique with normalized Gaus-

sian radial basis functions (RBFNN) [13]; the C4.5 algo-

rithm, which is an extended form of ID3 used for build-

ing the decision tree [21]; AdaBoostM1 (ADABM1), an

algorithm that uses the boosting procedure to improve

the classification accuracy of tree-based classifiers [8].

Logistic Model Trees, (LMT) consist on a standard de-

cision tree structure with logistic regression functions at

the leaves [17]; ADTree, which uses the boosting pro-

cedure to decision tree algorithms and has been shown

to produce very accurate classifiers [8,7].

Table 5 summarizes the results of several perfor-

mance metrics for the generalization sets. In all cases,

LRPU and LRIPU (our proposed models) showed the

best classification results in CCR (in minimum, max-

imum and mean values). In the inefficient group they

were also the best and second best (PAI and UAI val-

ues). However, when analysing efficient farms (Y = 1),

LDA showed better results (in terms of PA) than our

approach. LRIPU stands out especially in comparison

with LDA, IB1, MLP and RBFN. Considering the stan-

dard deviation (SD), the most unstable models in CCR

were C4.5, RBFNN and LR.

Statistical tests for mean CCR values of the 10 hold-

out samples, were applied in order to assess the sta-

tistical significance of the differences observed in the

different methods and determine the best classification

performance. First of all, a Kolmogorov-Smirnov’s test

(KS-test) with a significance level α = 0.05 was used

to evaluate if the different performance metrics in all

the methods sample for method follow a normal distri-

bution. Since no method obtained a p-value lower than

the critical level for the mean CCR measure a normal

distribution cannot be assumed in any of the cases. As a

consequence, a non-parametric Friedman’s test for de-

pendent samples was selected in order to see if the ap-

plied method significantly affected the results obtained.

The test concluded that these differences were signifi-

cant (with a p-value=0.00). So, the statistical analysis

ended by applying Wilcoxon’s signed-rank test for all

pairs of algorithms, results are shown in Table 6. These

results include, for each method, the number of times

that algorithms statistically outperformed (wins, W),

the number of draws (non-significant differences, D)

and the number of losses (number of algorithms that

outperform the method, L). The conclusion of the sta-

tistical test analysis confirm the superiority of LRIPU.

6 Discussion: relevant findings for decision

makers

In the present work we have addressed the problem of

classifying productive efficiency of olive-three farms in

dry farming. We propose to use the DEA method to

perform the patterns labelling based on the scored pro-

vided by DEA using variables which are difficult or

costly to obtain. Then, machine learning models are

training using easier to obtain descriptor variables to-

gether with the DEA classification. The LRPU and

LRIPU models have demonstrated their good accuracy

performance in terms of CCR, PA and UA metrics.

Both models are among the best when compared to

a selected group of different classification algorithms.

Our contribution is relevant from a decision maker

(farmers, agrarian policy experts or politicians among

others) point of view. We provide a framework to accu-

rately predict efficiency based on a statistical learning
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Table 5 Minimum, maximum, mean, standard deviation for CCR; and mean for PA and UA for Inefficient and Efficient farms
(best results are marked in bold)

Measure CCR PAI PAE UAI UAE

Method Min. Max. Mean SD. Mean Mean Mean Mean
ADABM1 67.0 71.3 69.3 1.7 89.3 19.5 73.4 47.8
ADTREE 68.5 68.9 68.8 0.2 78.1 42.2 77.3 42.5

C4.5 65.9 74.3 70.5 4.7 87.9 30.6 77.0 52.8
IB1 61.4 68.5 65.2 2.9 78.1 31.1 74.9 34.9
LDA 59.2 59.8 58.5 0.3 66.8 43.4 79.5 28.2
LMT 68.0 71.1 69.7 1.3 88.3 25.0 72.6 45.2
LR 64.2 71.1 68.8 3.7 87.7 19.2 74.1 39.2

LRIPU 71.9 76.4 75.2 1.9 91.9 31.6 77.9 59.2
LRPU 70.9 75.1 74.4 1.5 93.2 27.0 76.8 57.3
MLP 62.4 66.3 63.7 1.8 76.8 30.0 74.3 33.0

RBFNN 59.1 72.0 66.9 5.6 87.2 14.2 72.7 27.6

Table 6 Number of wins (W), draws (D) and losses (L) when comparing the different methods using the Wilcoxon’s signed
rank test with α = 0.10

ADABM1 ADTREE C4.5 IB1 LDA LMT LRIPU LRPU MLP LR RBFNN

Rank mean 6.00 5.50 9 4.25 1.25 7 12.00 10.00 3 8 4.50
W 2 2 2 1 0 2 10 7 1 1 0
D 6 6 7 7 1 6 0 3 2 8 7
L 2 2 1 2 9 2 0 0 7 1 3

methodology and easily collected variables avoiding the

necessity of complex and expensive survey processing

needed to obtain socio-economical variables at micro-

economy level. More precisely, the determination of pro-

ductive efficiency is critical in terms of rural sustainabil-

ity because it concerns a reasonable input (resources)

consumption in the rural environment.

Based on statistical evidences, we can confirm that

the best models are LRPU and LRIPU, being very pre-

cise in classifying productively inefficient farms. Nev-

ertheless, those models have a performance decay in

detecting efficient farms. However, in our specific case,

the study and detection of inefficient farms is more use-

ful than the detection of efficient farms. The interest in

detecting inefficient farms in the context of agrarian

sustainability studies arises in the problematic situa-

tion from productive-financial and social points of view.

Inefficient farms do not manage input consumption ap-

propriately and can contribute to processes of erosion,

pollution among others.

In addition to the binary classification, BCC-DEA

provides richer information when studying an inefficiency-

efficiency ratio less than one [0, 1), that is, degrees of

inefficiency can be analysed rather than absolute classi-

fications. On the other hand, BCC-DEA since classifies

a specific DMU as efficient by simply appointing a 1,

it is very difficult to distinguish efficiency levels within

the efficient group of farms (the super-efficiency prob-

lem). In this direction, as future work, BCC-DEA in-

formation could be used to addressing the problems as

a multi-class ordinal classification problem, to have a

richer farms groups.
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