Skip to main content

Advertisement

Log in

A genetic algorithm approach to customizing a glucose model based on usual therapeutic parameters

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Type 1 diabetes mellitus is a chronic disease characterized by the increase of glucose in the blood due to a defect in the action or in the production of insulin. For completely autonomous glycemic regulation, a model would be required which permits the future evolution of blood glucose to be estimated. One of the main problems in identifying models is the high variability of glucose profiles both from one patient to another, and in the same patient under not very different conditions. In this paper, we propose a method using an evolutionary algorithm to define the values of the parameters of a minimal model based on standard clinical therapy for a several-day horizon. The algorithm is able to show the trend of blood glucose in a 5-day profile by adjusting the glucose model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Acedo, L., Moraño, J.-A., Santonja, F.-J., Villanueva, R-J.: A deterministic model for highly contagious diseases: the case of varicella. Phys. A Stat. Mech. Appl. 450, 278–286 (2016). ISSN 0378-4371. doi:10.1016/j.physa.2015.12.153

  2. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. Found. Genet. Algorithms 2, 187–202 (1993)

    Google Scholar 

  3. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover. In: Back, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 246–253. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  4. Janikow, C.Z., Michalewicz, Z.: An experimental comparison of binary and floating point representations in genetic algorithms. In: ICGA, pp. 31–36 (1991)

  5. Goldberg, D.E.: Real coded genetic algorithms virtual alphabets and blocking. Complex Syst. 5, 139–167 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Corcoran, A.L., Sen S.: Using real-valued genetic algorithms to evolve sets for classification. In: IEEE Conference on Evolutionary Computation, pp. 120–124 (1994)

  7. Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, vol. 1, pp. 657–664. Morgan Kaufmann Publishers Inc. (1999)

  9. Back, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  10. Prud’homme, T., Bock, A., François, G., Gillet, D.: Preclinically assessed optimal control of postprandial glucose excursions for type 1 patients with diabetes. In: IEEE Conference on Automation Science and Engineering (CASE) (2011). doi:10.1109/CASE.2011.6042510

  11. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1964). doi:10.1093/comjnl/7.2.155

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for real coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18, 309–338 (2003)

  13. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter evolution. Evol. Comput. 10(4), 371–395 (2002)

    Article  Google Scholar 

  14. Davis, L.: Handbook on Genetic Algorithm. Van Nostral Reinhol, New York (1991)

    Google Scholar 

  15. Yang, J-M., Kao, C.Y.: A combined evolutionary algorithm for real parameter optimization. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation, pp. 732–737 . IEEE Service Center, Piscataway (1996)

  16. Surry, P.D., Radcliffe, N.J.: Real representations. In: Belew, R.K., Vose, M.D. (eds.) Foundations of Genetic Algorithms 4, pp. 343–363. Morgan Kaufmann Publishers, San Francisco (1996)

    Google Scholar 

  17. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann Publishers, San Mateo (1989)

    Google Scholar 

  18. Araujo, L., Cervigón, C.: Evolutionary algorithms: a practical approach. RAMA, pp.  111 (2009)

  19. Michalewicz, Z.: Genetic Algorithms \(+\) Data Structures \(=\) Evolution Programs, 3rd edn. Springer, New York (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the TIN2014-54806-R, TIN2014-57028-R and MTM2013-41765-P. The authors would also like to thank María-Aranzazu Aramendi-Zurimendi and Remedios Martínez-Rodríguez from the Endocrinology and Nutrition Service at the Príncipe de Asturias hospital (Alcalá de Henares, Madrid, Spain). Abbot has supported this research with the donation of a glucose sensor (Free Style Libre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervigón, C., Hidalgo, J.I., Botella, M. et al. A genetic algorithm approach to customizing a glucose model based on usual therapeutic parameters. Prog Artif Intell 6, 255–261 (2017). https://doi.org/10.1007/s13748-017-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-017-0121-9

Keywords

Profiles

  1. J. Ignacio Hidalgo