Abstract
Planning is the problem of choosing and organizing a sequence of actions that when applied in a given initial state results in a goal state. However, in real problems unexpected action outcomes may occur and the initial state of the world may not be known with certainty. Incremental contingency planning considers potential failures in a plan and attempts to avoid them by incrementally adding contingency branches to the plan in order to improve the overall probability. The planner focuses on high-probability outcomes and attempts to avoid them by incrementally adding contingency branches to the plan in order to improve the overall probability. Some of these high-probability outcomes might be repairable by runtime replanning so we focus on repairing critical outcomes that cannot be fixed by runtime replanning. For this planning to be successful, we also need high-probability seed plans. In this work, we describe approaches to generating high-probability seed plans and to incremental contingency planning on the critical outcomes.
















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
We assume that the executive is smart enough that it will not execute an action if its preconditions are not satisfied so the state remains unchanged in this case.
References
Bonet, B., Given, R.: International Probabilistic Planning Competition. http://www.ldc.usb.ve/~bonet/ipc5, (2006)
Bryce, D., Smith, D.E.: Using interaction to compute better probability estimates in plan graphs. In: Proceedings of the ICAPS-06 Workshop on Planning Under Uncertainty and Execution Control for Autonomous Systems, The English Lake District, Cumbria, UK, (2006)
Buffet, O., Aberdeen, D.: The factored policy-gradient planner. Artif. Intell. 173(5–6), 722–747 (2009)
Buffet, O., Bryce, D.: International Probabilistic Planning Competition. http://ippc-2008.loria.fr/wiki/index.php/Main_Page, (2008)
Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D.E., Washington, R.: Incremental contingency planning. In: Proceedings of ICAPS-03 Workshop on Planning under Uncertainty, Trento, Italy, (2003)
E-Martín, Y., R-Moreno, M.D., Smith, D.E.: Progressive heuristic search for probabilistic planing based on interaction estimates. Expert Syst. 31(5), 421–436 (2014)
E-Martín, Y., R-Moreno, M.D., Smith, D.E.: Incremental contingency planning for recovering from uncertain outcomes. In: Proceedings of the Conference of the Spanish Association for Artificial Intelligence, Salamanca, Spain, (2016)
Foss, J., Onder, N., Smith, D.E.: Preventing unrecoverable failures through precautionary planning. In: Proceedings of the ICAPS’07 Workshop on Moving Planning and Scheduling Systems into the Real World, Providence, RI, USA, (2007)
Jiménez, S., Coles, A., Smith, A.: Planning in probabilistic domains using a deterministic numeric planner. In: Proceedings of the Workshop of the UK Planning and Scheduling Special Interest Group, Nottingham, UK, (2006)
Little, I., Thiébaux, S.: Probabilistic planning vs replanning. In: Proceedings of the ICAPS’07 Workshop on Planning Competitions, Providence, RI, USA, (2007)
Teichteil-Königsbuch, F., Kuter, U., Infantes, G.: Incremental plan aggregation for generating policies in MDPs. In: Proceedings of the International Conference on Antonomous Agents and Multiagent Sytems, Toronto, Canada, (2010)
Yoon, S., Fern, A., Givan, R.: FF-replan: a baseline for probabilistic planning. In: Proceedings of the International Conference on Automated Planning and Scheduling, Providence, RI, USA, (2007)
Yoon, S., Fern, A., Givan, R., Kambhampati, S.: Probabilistic planning via determinization in hindsight. In: Proceedings of the AAAI Conference on Artificial Intelligence, Chicago, IL, USA, (2008)
Yoon, S., Ruml, W., Benton, J., Do, M.: Improving determinization in hindsight for on-line probabilistic planning. In: Proceedings of the International Conference on Automated Planning and Scheduling, Toronto, Ontario, Canada, (2010)
Younes, H.L.S., Littman, M.L., Weissman, D., Asmuth, J.: The first probabilistic track of the International Planning Competition. J. Artif. Intell. Res. 24, 841–887 (2005)
Acknowledgements
This work was supported by the NASA Safe Autonomous Systems Operations (SASO) project, the MINECO project EphemeCH TIN2014-56494-C4-4-P, and the UAH project 2016/00351/001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
E-Martín, Y., R-Moreno, M.D. & Smith, D.E. Incremental contingency planning for recovering from critical outcomes in high-probability seed plans. Prog Artif Intell 6, 299–314 (2017). https://doi.org/10.1007/s13748-017-0125-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-017-0125-5