Skip to main content

Advertisement

Log in

A pixel processing approach for retinal vessel extraction using modified Gabor functions

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Computerized image analysis methods for retinal imaging are primarily of great interest and benefit as it provides significant information about the retinal vessels. Retinal image analysis techniques can be of pertinence for ophthalmologists and a stand-alone warning implement for determining the retinal disorders. This requires dedicated image processing algorithms to provide mathematical description about the region of interest. This paper presents an automated pixel processing-based retinal vessel extraction algorithm using modified Gabor functions and morphological operators. Color normalization is performed to make the algorithm adaptable to intra- and inter-image variabilities. Furthermore, the enhanced retinal vessels are subjected to automatic thresholding for vessel pixel classification. The proposed method is tested on a set of retinal images collected from the DRIVE database and subjected to robust performance analysis to evaluate the efficacy. The proposed algorithm achieved an average accuracy of 97.22%, sensitivity of 85.12% and specificity of 98.57%, which is comparably preferable to the well-known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. WHO Global Report on Diabetes. http://www.who.int/diabetes/global-report/en/

  2. Moghimirad, E., Rezatofighi, S.H., Soltanian-Zadeh, H.: Multi-scale approach for retinal vessel segmentation using medialness function. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 29–32 (2010)

  3. Zhao, Y.Q., Wang, X.H., Wang, X.F., Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recognit. 47(7), 2437–2446 (2014)

    Article  Google Scholar 

  4. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  5. Sofka, M., Stewart, C.V.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imaging 25(12), 1531–1546 (2006)

    Article  Google Scholar 

  6. Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc. 7(4), 373–383 (2013)

    Article  MathSciNet  Google Scholar 

  7. Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R., ter Haar Romeny, B.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631–2644 (2016)

    Article  Google Scholar 

  8. Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34(3), 213–227 (2010)

    Article  Google Scholar 

  9. Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognit. 45(4), 1235–1244 (2012)

    Article  MATH  Google Scholar 

  10. De, J., Ma, T., Li, H., Dash, M., Li, C.: Automated tracing of retinal blood vessels using graphical models. In: Scandinavian Conference on Image Analysis. Springer, Berlin (2013)

  11. Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)

    Article  Google Scholar 

  12. Aquino, A., Gegundez-Arias, M.E., Marin, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010)

    Article  Google Scholar 

  13. Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–96 (2013)

    Article  Google Scholar 

  14. Alshayeji, M., Al-Roomi, S.A., Abed, S.E.: Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med. Biol. Eng. Comput. 55(6), 935–948 (2016)

    Article  Google Scholar 

  15. Pereira, C., Gonçalves, L., Ferreira, M.: Optic disc detection in color fundus images using ant colony optimization. Med. Biol. Eng. Comput. 51(3), 295–303 (2013)

    Article  Google Scholar 

  16. DRIVE: Result Browser. http://www.isi.uu.nl/Research/Databases/DRIVE/browser.php. Accessed 3 Jan 2017

  17. Gabor, D.: Theory of communication. Part 1: the analysis of information electrical engineers—part III. J. Inst. Radio Commun. Eng. 93(26), 429–41 (1946)

    Google Scholar 

  18. Liu, Z.Q., Cai, J., Buse, R.: Hand-Writing Recognition: Soft Computing and Probablistic Approaches. Springer, Berlin (2003)

    Book  Google Scholar 

  19. Gonzalez, R.C., Woods, R.E.: Digital image processing (2008)

  20. Jain, A.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)

    MATH  Google Scholar 

  21. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004)

    Article  Google Scholar 

  22. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  23. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–58 (2011)

    Article  Google Scholar 

  24. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)

    Article  Google Scholar 

  25. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–45 (2010)

    Article  Google Scholar 

  26. Shahbeig, S.: Automatic and quick blood vessels extraction algorithm in retinal images. IET Image Proc. 7(4), 392–400 (2013)

    Article  MathSciNet  Google Scholar 

  27. Salazar-Gonzalez, A., Kaba, D., Li, Y., Liu, X.: Segmentation of the blood vessels and optic disk in retinal images. IEEE J. Biomed. Health Inform. 18(6), 1874–1886 (2014)

    Article  Google Scholar 

  28. Zhu, C., Zou, B., Xiang, Y., Cui, J., Wu, H.: An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin. J. Electron. 25(3), 503–511 (2016)

    Article  Google Scholar 

  29. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and sub image classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)

    Google Scholar 

  30. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  31. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  32. Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  33. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

    Article  Google Scholar 

  34. Zhang, J., Chen, Y., Bekkers, E., Wang, M., Dashtbozorg, B., Haar Romeny, B.M.: Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognit. 69, 107–123 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Prof. Tanweer, REVA University Bangalore, for his extensive support and contribution in carrying out this research. This work was supported by Manipal University Dr. T.M.A. Pai Research Scholarship under Research Registration No. 160900105-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameena Pathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathan, S., Siddalingaswamy, P.C. & Prabhu, K.G. A pixel processing approach for retinal vessel extraction using modified Gabor functions. Prog Artif Intell 7, 1–14 (2018). https://doi.org/10.1007/s13748-017-0134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-017-0134-4

Keywords

Navigation