Abstract
Metareasoning has been widely studied in the literature, with a wide variety of algorithms and partially overlapping methodological approaches. However, these methods are typically either not targeted toward practical machine learning systems or alternatively are focused on achieving the best possible performance for a particular domain, with extensive human tuning and research, and vast computing resources. In this paper, our goal is to create systems that perform sustained autonomous learning, with automatically determined domain-specific optimizations for any given domain, and without requiring human assistance. We present Alma, a metareasoning architecture that creates and selects reasoning methods based on empirically observed performance. This is achieved by using lazy learning at the metalevel, and automatically training and combining reasoning methods at run-time. In experiments across diverse data sets, we demonstrate the ability of Alma to successfully reason about learner performance in different domains and achieve a better overall result than any of the individual reasoning methods, even with limited computing time available.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Algorithms with stochastic behavior are modeled as different random number generator states being different functions.
Standard UCB1 can provably achieve asymptotic zero-regret for the basic multi-armed bandit problem, while this has not been shown for UCB1TUNED. However, the zero-regret proof doesn’t apply to the harder metareasoning problem Alma is addressing, and for our components, we are primarily interested in practical performance.
References
Aha, D.W. (ed.): Lazy Learning. Kluwer, Norwell (1997)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). https://doi.org/10.1023/A:1013689704352
Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451–468 (1969)
Bennett, J., Lanning, S., et al.: The Netflix prize. In: Proceedings of the KDD Cup and Workshop, vol. 2007, p. 35. New York, NY, USA (2007)
Bonissone, P.P.: Lazy meta-learning: creating customized model ensembles on demand. In: IEEE World Congress on Computational Intelligence, pp. 1–23. Springer, Berlin (2012)
Brügmann, B.: Monte Carlo Go. In: AAAI Fall Symposium on Games: Playing, Planning, and Learning (1993)
Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 18. ACM (2004)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)
Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-armed bandits. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 273–280. Curran Associates, Inc. (2009)
Chan, P.K., Stolfo, S.J.: Experiments on multistrategy learning by meta-learning. In: Proceedings of the Second International Conference on Information and Knowledge Management, pp. 314–323. ACM (1993)
Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)
Cox, M.: Introspective Multistrategy Learning: Constructing a Learning Strategy Under Reasoning Failure. Ph.D. Thesis, College of Computing, Georgia Institute of Technology (1996)
Cox, M.T., Eiselt, K., Kolodner, J., Nersessian, N., Recker, M., Simon, T.: Introspective multistrategy learning: on the construction of learning strategies. Artif. Intell. 112, 1–55 (1999)
Dietterich, T.G.: Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, MCS’00, pp. 1–15. Springer, London, UK (2000). http://dl.acm.org/citation.cfm?id=648054.743935
Fox, S., Leake, D.B.: Introspective reasoning for index refinement in case-based reasoning. J. Exp. Theor. Artif. Intell. 13(1), 63–88 (2001). https://doi.org/10.1080/09528130010029794
Francis, A.G., Ram, A.: The utility problem in case-based reasoning. In: AAAICBR-93, Proceedings of the 1993 Case-Based Reasoning Workshop (1993)
Gelly, S., Wang, Y.: Exploration Exploitation in Go: UCT for Monte-Carlo Go. In: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006) (2006)
Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R., Macià, N., Ray, B., Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., Viegas, E.: A brief review of the ChaLearn AutoML challenge: any-time any-dataset learning without human intervention. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the Workshop on Automatic Machine Learning, Proceedings of the Machine Learning Research, vol. 64, pp. 21–30. PMLR, New York, NY, USA (2016). http://proceedings.mlr.press/v64/guyon_review_2016.html
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Holte, R.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–91 (1993)
Houeland, T.G., Aamodt, A.: Towards an introspective architecture for meta-level reasoning in clinical decision support systems. In: ICCBR 2009, 7th Workshop on CBR in the Health Sciences (2009)
Houeland, T.G., Aamodt, A.: The Utility Problem for Lazy Learners—Towards a Non-eager Approach, pp. 141–155. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14274-1_12
Houeland, T.G., Bruland, T., Aamodt, A., Langseth, H.: Extended abstract: combining CBR and BN using metareasoning. In: Kofod-Petersen, A., Heintz, F., Langseth, H. (eds.) SCAI, Frontiers in Artificial Intelligence and Applications, vol. 227, pp. 189–190. IOS Press (2011). https://doi.org/10.3233/978-1-60750-754-3-189
Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. ECML-06. Number 4212 in LNCS, pp. 282–293. Springer, Berlin (2006)
Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka 2.0: automatic model selection and hyperparameter optimization in weka. J. Mach. Learn. Res. 17, 1–5 (2016)
Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)
Laird, J.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)
Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44(1), 117–130 (2015)
Lenz, M.: CABATA: a hybrid CBR system. In: Richter, M.M., Wess, S., Althoff, K.D., Maurer, F. (eds.) First European Workshop on Case-Based Reasoning (EWCBR-93): Posters and Presentations (volume I), pp. 204–209 (1993)
Li, B., Hoi, S.C.H.: Online portfolio selection: a survey. ACM Comput. Surv. 46(3), 35:1–35:36 (2014). https://doi.org/10.1145/2512962
Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml. Accessed 26 May 2017
Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. Artif. Intell. Rev. 42, 275–293 (2014). https://doi.org/10.1007/s10462-012-9338-y
Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012)
Mitchell, T.M.: The Need for Biases in Learning Generalizations. Tech. rep (1980)
Nascimento, D.S., Canuto, A.M., Coelho, A.L.: An empirical analysis of meta-learning for the automatic choice of architecture and components in ensemble systems. In: 2014 Brazilian Conference on Intelligent Systems (BRACIS), pp. 1–6. IEEE (2014)
Radhakrishnan, J., Ontañ, S., Ram, A.: Goal-driven learning in the gila integrated intelligence architecture. In: Boutilier, C. (ed.) IJCAI, pp. 1205–1210 (2009). http://dblp.uni-trier.de/db/conf/ijcai/ijcai2009.html
Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976). https://doi.org/10.1016/S0065-2458(08)60520-3
Rubin, J., Watson, I.: On combining decisions from multiple expert imitators for performance. In: Walsh, T. (ed.) IJCAI, pp. 344–349. IJCAI/AAAI (2011)
Salzberg, S.L.: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (1997). https://doi.org/10.1023/A:1009752403260
Schaffer, C.: Selecting a classification method by cross-validation. Mach. Learn. 13(1), 135–143 (1993). https://doi.org/10.1007/BF00993106
Schapire, R.E.: The Boosting Approach to Machine Learning: An Overview. Springer, New York, pp. 149–171 (2003). https://doi.org/10.1007/978-0-387-21579-2_9
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961
Simm, J.: Survey of Hyperparameter Optimization in NIPS2014. http://github.com/jaak-s/nips2014-survey (2015). Accessed 26 May 2017
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3–4), 285–294 (1933)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the KDD-2013, pp. 847–855 (2013)
Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002). https://doi.org/10.1023/A:1019956318069
Wallis, K.F.: Combining forecasts–forty years later. Appl. Financ. Econ. 21(1–2), 33–41 (2011). https://doi.org/10.1080/09603107.2011.523179
Watson, I.: A case study of maintenance of a commercially fielded case-based reasoning system. Comput. Intell. 17, 387–398 (2001)
Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992). https://doi.org/10.1016/S0893-6080(05)80023-1
Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)
Zhang, X.S., Shrestha, B., Yoon, S., Kambhampati, S., et al.: An ensemble architecture for learning complex problem-solving techniques from demonstration. ACM Trans. Intell. Syst. Technol. 3(4), 75:1–75:38 (2012)
Zhang, X.S., Yoon, S., DiBona, P., Appling, D.S., Ding, L., et al.: An ensemble learning and problem solving architecture for airspace management. In: Haigh, K.Z., Rychtyckyj, N. (eds.) Proceedings of Twenty-First Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-09). AAAI (2009)
Zoph, B., Le, Q.V.: Neural Architecture Search with Reinforcement Learning (2017). http://arxiv.org/abs/1611.01578
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Houeland, T.G., Aamodt, A. A learning system based on lazy metareasoning. Prog Artif Intell 7, 129–146 (2018). https://doi.org/10.1007/s13748-017-0138-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-017-0138-0