Skip to main content

Advertisement

Log in

Face segmentation based on level set and improved DBM prior shape

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper puts forward a new method of level set image segmentation based on prior shape, which aims to provide a better solution to the challenging segmentation problems that typically occur in images with complex background, intensity inhomogeneity and partially blocked targets. First, we introduced glial cells into deep Boltzmann machine (DBM) to solve that units in the DBM layer are not connected to each other, and then the novel DBM is employed to learn prior shape. Next, we used the variational level set and the local Gaussian distribution to fit the image energy term with local mean and local variance of image. Then, the prior shape energy is integrated into the image energy term to construct the final energy segmentation model. The experimental results show that the new model has stronger robustness and higher efficiency for face images segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Li, Y., Wang, S., Li, C.: A fast color image segmentation approach using GDF with improved region-level Ncut. Math. Probl. Eng. 3, 1–14 (2018)

    Google Scholar 

  2. Buenestado, P., Acho, L.: Image segmentation based on statistical confidence intervals. Entropy 20(46), 1–12 (2018)

    Google Scholar 

  3. Li, P., Li, Z.: Color image segmentation using PSO-based histogram thresholding. WIT Trans. Inf. Commun. Technol. 52, 1601–1607 (2014)

    Article  Google Scholar 

  4. Hassanat, A., Alkasassbeh, M., Al-Awadi, M.: Color-based object segmentation method using artificial neural network. Simul. Model. Pract. Theory 64, 3–17 (2016)

    Article  Google Scholar 

  5. Zhao, Y., Tang, F., Dong, W.: Joint face alignment and segmentation via deep multi-task learning. Multimed. Tools Appl. 8, 1–18 (2018)

    Google Scholar 

  6. Ravishankar, H., Thiruvenkadam, S., Venkataramani, R.: Joint deep learning of foreground, background and shape for robust contextual segmentation, pp. 622–632 (2017)

  7. Filipe, S., Alexandre, L.A.: Algorithms for invariant long-wave infrared face segmentation: evaluation and comparison. Pattern Anal. Appl. 17(4), 823–837 (2014)

    Article  MathSciNet  Google Scholar 

  8. Nidhal, K., Abbadi, E., Abdul, A.: Detection and segmentation of human face. Int. J. Adv. Res. Comput. Commun. Eng. 4(2), 90–94 (2015)

    Article  Google Scholar 

  9. Cheddad, A., Mohamad, D., Manaf, A.A.: Exploiting Voronoi diagram properties in face segmentation and feature extraction. Pattern Recognit. 41(12), 3842–3859 (2008)

    Article  MATH  Google Scholar 

  10. Adipranata, R., Ballangan, C.G., Ongkodjojo, R.P.: Fast method for multiple human face segmentation in color image. In: International Conference on Future Generation Communication and Networking, vol. 3, no. 2, pp. 158–161. IEEE Computer Society (2008)

  11. Kamencay, P., Zachariasova, M., Hudec, R.: A novel approach to face recognition using image segmentation based on SPCA-KNN method. Radioengineering 22(1), 92–99 (2013)

    Google Scholar 

  12. Kawulok, M., Celebi, M.E., Smolka, B.: Advances in face detection and facial image analysis. Springer 4(6), 561–567 (2016)

    Google Scholar 

  13. Filipe, S., Alexandre, L.A.: Improving face segmentation in thermograms using image signatures. In: Iberoamerican Congress Conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 402–409. Springer (2010)

  14. Filipe, S., Alexandre, L.A.: Thermal infrared face segmentation: a new pose invariant method. Lect. Notes Comput. Sci. 7887, 632–639 (2013)

    Article  Google Scholar 

  15. Samir, K.B.: A method for face segmentation, facial feature extraction and tracking. Int. J. Comput. Sci. Eng. Technol. 1(3), 137–139 (2014)

    Google Scholar 

  16. Kumaravel, M., Karthik, S., Sivraj, P.P.: Human face image segmentation using level set methodology. Int. J. Comput. Appl. 44(12), 0975–8887 (2012)

    Google Scholar 

  17. Jing-Feng, M.A., Liu, Y., Xin, Q.I.: A cell image segmentation method based on single level set function. Chin. J. Med. Phys. 30(6), 4522–4523 (2013)

    Google Scholar 

  18. Tan, H., Jiang, H., Dong, A.: C–V level set based cell image segmentation using color filter and morphology. In: International Conference on Information Science, Electronics and Electrical Engineering, vol. 2, pp. 1073–1077. IEEE (2014)

  19. Zhang, R., Zhu, S., Zhou, Q.: A novel gradient vector flow snake model based on convex function for infrared image segmentation. Sensors 16(10), 1–7 (2016)

    Article  Google Scholar 

  20. Lim, P.H., Bagci, U., Bai, L.: A new prior shape model for level set segmentation. In: Iberoamerican Congress on Pattern Recognition, vol. 7042, pp. 125–132. Springer, Berlin (2011)

  21. Qiao, Y., Wei, Z., Zhao, Y.: Thermal infrared pedestrian image segmentation using level set method. Sensors 17(8), 1811 (2017)

    Article  Google Scholar 

  22. Ma, Q., Kong, D.: A new variational model for joint restoration and segmentation based on the Mumford–Shah model. J. Vis. Commun. Image Represent. 53, 224–234 (2018)

    Article  Google Scholar 

  23. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’07, vol. 2007, no. 1, pp. 1–7. IEEE (2007)

  24. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE EMBS International Summer School on Biomedical Imaging, vol. 1, p. 8. IEEE (2003)

  25. Rousson., M, Paragios., N.: Shape priors for level set representations. In: European Conference on Computer Vision, vol. 2351, pp. 78–92 (2002)

  26. Khalifa, F., Elbaz, A., Gimel’Farb, G.: Shape-appearance guided level-set deformable model for image segmentation. In: International Conference on Pattern Recognition, pp. 4581–4584. IEEE (2010)

  27. Majeed, T., Fundana, K., Kiriyanthan, S.: Graph cut segmentation using a constrained statistical model with non-linear and sparse shape optimization. In: Medical Computer Vision, Recognition Techniques and Applications in Medical Imaging, vol. 7766, pp. 48–58. Springer, Berlin (2012)

  28. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. J. Mach. Learn. Res. 5(2), 1967–2006 (2009)

    MATH  Google Scholar 

  29. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kai, Y., Lei, J., Chen, Y.: Deep learning: yesterday, today, and tomorrow. J. Comput. Res. Dev. 50(9), 1799–1804 (2013)

    Google Scholar 

  31. Cheng, F., Zhang, H., Fan, Wl: Image recognition technology based on deep learning. Wirel. Pers. Commun. 102(2), 1–17 (2018)

    Article  Google Scholar 

  32. Karahan, S., Akgul, Y.S.: Eye detection by using deep learning. In: Signal Processing and Communication Application Conference, pp. 2145–2148. IEEE (2016)

  33. Zhou, S., Chen, Q., Wang, X.: Active deep learning method for semi-supervised sentiment classification. Neurocomputing 120(10), 536–546 (2013)

    Article  Google Scholar 

  34. Chen, C.L.P., Zhang, C.Y., Chen, L.: Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. 23(6), 2163–2173 (2015)

    Article  Google Scholar 

  35. Chen, Y.: Mineral potential mapping with a restricted Boltzmann machine. Ore Geol. Rev. 71, 749–760 (2015)

    Article  Google Scholar 

  36. Odense, S., Edwards, R.: Universal approximation results for the temporal restricted Boltzmann Machine and the recurrent temporal restricted Boltzmann Machine. J. Mach. Learn. Res. 17, 1–21 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Cai, X., Hu, S., Lin, X.: Feature extraction using restricted Boltzmann machine for stock price prediction. In: IEEE International Conference on Computer Science and Automation Engineering, vol. 3, pp. 80–83. IEEE (2012)

  38. Cho, K.H., Raiko, T., Ilin, A.: Gaussian–Bernoulli deep Boltzmann machine. In: International Joint Conference on Neural Networks, pp. 1–7. IEEE (2013)

  39. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. In: International Conference on Neural Information Processing Systems, vol. 15, pp. 2222–2230 (2012)

  40. He, S., Wang, S., Lan, W., Fu, H., Ji, Q.: Facial expression recognition using deep Boltzmann machine from thermal infrared images. Affect. Comput. Intell. Interact. 7971, 239–244 (2013)

    Google Scholar 

  41. Wang, L., He, L., Mishra, A.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)

    Article  MATH  Google Scholar 

  42. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 511–518. IEEE (2003)

  43. Liu, N., Zhai, G.: Free energy adjusted peak signal to noise ratio (FEA-PSNR) for image quality assessment. Sens. Imaging 18(1), 11 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This Research is funded by the Education Department of Liaoning Province Foundation Grant Number LJQ2014033 and the Natural Science Foundation of Liaoning Province Grant Number 20180551048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhao, J. & Wang, H. Face segmentation based on level set and improved DBM prior shape. Prog Artif Intell 8, 167–179 (2019). https://doi.org/10.1007/s13748-018-00169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-018-00169-5

Keywords

Navigation