Abstract
The paper narrates the review of cost-based query optimizers designed using database strategies, deterministic, stochastic, hybrid and energy efficiency-based techniques. It was endowed that earlier authors have used a different database and deterministic strategy like indexing, query filtering, normalization, query graph, tableau, exhaustive enumeration, query graph and dynamic programming to optimize queries. However, these techniques are not pertinent to the optimization of serpentine database queries. Nonetheless, it can be resourcefully optimized by using divergent individual and hybrid nature-inspired computing techniques. Research divulges that the hybrid approach was and remains effective to unravel the query optimization problem. Moreover, notable work is effectuated to optimize data retrieval queries only; however, little work is carried out to optimize write, delete and update queries. Additionally, energy-efficient query optimization is an emanate area. The copious amount of energy can be defended by using energy-efficient query optimizers. The extensive publication trend of distributed query optimizers has also examined that can be of enormous concern for the researchers who want to publish their article and to pursue their research in this domain area. It is ascertained that momentous volume of query optimization work has been effectuated using genetic algorithm followed by swarm particle optimization. Additionally, the researcher has to use and analyze the performance of different emerging evolutionary techniques (Ant Lion Optimization, Whale Optimization, Monkey Search, Dolphin Echolocation, Chaotic Swarming) in designing cost-based query optimizer.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gorla, N., Song, S.K.: Sub-query allocation in DDB using GA. J. Comput. Sci. Technol. 10, 31–37 (2010)
Zhou, L., Chen, Y., Li, T., Yu, Y.: The semi-join query optimization in a distributed database system. In: National Conference on Information Technology and Computer Science (CITCS 2012), pp. 606–609 (2012)
Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Pearson Education, New York City (2009)
French, C.D.: “One size fits all” database architectures do not work for DSS. In: ACM SIGMOD Record, vol. 24, no. 2, pp. 449–450. ACM (1995)
Elnaffar, S., Martin, P., Schiefer, B., Lightstone, S.: Is it DSS or OLTP: automatically identifying DBMS workloads. J. Intell. Inf. Syst. 30(3), 249–271 (2008)
Sharma, M., Singh, G., Singh, R.: Design and analysis of stochastic DSS query optimizers in a distributed database system. Egypt. Inf. J. 17(2), 161–173 (2016)
Patel, D., Patel, P.: A review paper on different approaches for query optimization using schema object base view. Int. J. Comput. Appl. 114(4), 1 (2015)
Umar, Y.R.M., Welekar, A.R.: Query optimization in distributed database: a review. Int. J. Curr. Eng. Technol. 4(6), 3901–3903 (2014)
Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv. (CsUR) 16(2), 111–152 (1984)
Vellev, S.: Review of algorithms for the join ordering problems in database query optimization. Inf. Technol. Control 1, 32–40 (2009)
Banubakode, A., Acharya, H.: Query optimization in object-oriented database management systems: a short review. Int. J. Comput. Sci. Eng. Technol. 1(1), 1–6 (2010)
Khan, M., Khan, M.N.A.: Exploring query optimization techniques in relational databases. Int. J. Database Theory Appl. 6(3), 11–20 (2013)
Doshi, P., Raisinghani, V.: Review of dynamic query optimization strategies in distributed database. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 6, pp. 145–149, IEEE (2011)
Aponso, G.C.A.L., Tennakon, T.M.T.I., Arampath, A.M.C.B., Kandeepan, S., Amaratunga, H.P.K.K.S.: Database optimization using GA for distributed databases. Int. J. Comput. 24(1), 23–27 (2017)
Hevner, A.R., Yao, S.B.: Query processing in distributed database system. IEEE Trans. Softw. Eng. 3, 177–187 (1979)
Ceri, S., Pelagatti, G.: Allocation of operations in distributed database access. IEEE Trans. Comput. 2, 119–129 (1982)
Martin, T.P., Lam, K.H., Russell, J.I.: Evaluation of site selection algorithms for distributed query processing. Comput. J. 33(1), 61–70 (1990)
Sharma, M., Singh, G., Singh, R., Singh, G.: Analysis of DSS queries using entropy-based restricted genetic algorithm. Appl. Math. Inf. Sci. 9(5), 2599 (2015)
Sinha, M., Chande, S.V.: Query optimization using GA. Res. J. Inf. Technol. 2(3), 139–144 (2010)
Rho, S., March, S.T.: Optimizing distributed join queries: a genetic algorithm approach. Ann. Oper. Res. 71, 199–228 (1997)
Sharma, M., Singh, G., Singh, G., Singh, G.: Analysis of DSS queries in distributed database system using exhaustive and genetic approach. Int. J. Adv. Comput. 36(2), 1 (2013)
Sharma, M., Singh, G., Singh, R., Singh, G.: Stochastic analysis of DSS queries for a DDB design. Int. J. Comput. Appl. 83(5), 73 (2013)
Kumar, T.V.V., Singh, V.: Distributed query processing plans generation using GA. Int. J. Comput. Theory Eng. 3(1), 38–45 (2011)
Sevinç, E., Coşar, A.: An evolutionary genetic algorithm for optimization of distributed database queries. Comput. J. 54(5), 717–725 (2010)
Zhou, Z.: Using heuristics and genetic algorithm for large scale database query optimization. J. Inf. Comput. Sci. 2(4), 261–280 (2007)
Mishra, S.K., Pattnaik, S.: Evaluation of cost of plans in multiple dependent queries execution using GA techniques. Int. J. Eng. Technol. 3(2), 179–182 (2011)
Saedi, A.K.Z.A., Ghazali, R., Deris, M.M.: Materializing multi-join query optimization for RDBMS using swarm intelligent approach. Int. J. Comput. Inf. Syst. Indus. Manag. Appl. 7, 74–83 (2015)
Kolaei, A.A., Ahmadzadeh, M.: The optimization of running queries in relational databases using the ant-colony algorithm. arXiv preprint arXiv:1311.4088 (2013)
Kumar, T.V., Arun, B., Kumar, L.: Distributed query plan generation using HBMO. In: International Workshop on Multi-disciplinary Trends in Artificial Intelligence, pp. 293–304. Springer, Heidelberg (2013)
Joshi, M., Srivastava, P.R.: Query optimization: an intelligent hybrid approach using Cuckoo and Tabu search. Int. J. Intell. Inf. Technol. 9(1), 40–55 (2013)
Fister Jr, I., Yang, X.S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186 (2013)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
Wang, G.G., Deb, S., Gao, X.Z., Coelho, L.D.S.: A new meta-heuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspir. Comput. 8(6), 394–409 (2016)
Mirjalili, S.: The antlion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)
Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016)
Abedinia, O., Amjady, N., Ghasemi, A.: A new meta-heuristic algorithm based on shark smell optimization. Complexity 21(5), 97–116 (2016)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)
Yang, X.S.: A new meta-heuristic bat-inspired algorithm. In: Cruz, C., González, J.R., Krasnogor, N., Pelta, D.A., Terrazas, G. (eds.) Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)
Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1(4), 330–343 (2010)
Mucherino, A., Seref, O.: Monkey search: a novel meta-heuristic search for global optimization. In: AIP Conference Proceedings, AIP, vol. 953, no. 1, pp. 162–173 (2007)
Yang, X.S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178. Springer, Berlin (2009)
Chu, S.C., Tsai, P.W., Pan, J.S.: Cat swarm optimization. In: Pacific Rim International Conference on Artificial Intelligence, pp. 854–858. Springer, Berlin (2006)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization, vol. 200. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
Li, X.L.: An optimizing method based on autonomous animals: fish-swarm algorithm. Syst. Eng. Theory Pract. 22(11), 32–38 (2002)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
John, Holland: Genetic algorithm. Sci. Am. 267(1), 66–73 (1992)
Dorigo, M., Birattari, M.: Ant colony optimization. In: Encyclopaedia of Machine Learning, pp. 36–39. Springer, Boston (2011)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95, pp. 39–43. IEEE (1995
Cornell, D.W., Yu, P.S.: On optimal site assignment for relations in the distributed database environment. IEEE Trans. Softw. Eng. 15(8), 1004–1009 (1989)
Mor, J., Kashyap, I., Rathy, R.K.: Analysis of query optimization techniques in databases. Int. J. Comput. Appl. 47(15), 5–9 (2012)
Bamnote, G.R., Agrawal, S.S.: Introduction to query processing and optimization. Int. J. 3(7), 53–56 (2013)
Gupta, M.K., Chandra, P.: An empirical evaluation of LIKE operator in oracle. Bharati Vidyapeeth’s Inst. Comput. Appl. Manag. 3(2), 351–357 (2011)
Kumar, S., Khandelwal, G., Varshney, A., Arora, M.: Cost-based query optimization with heuristics. Int. J. Sci. Eng. Res. 2(9), 1 (2011)
Hamdoon, S.H., Gawande, V., Al-Barashdi, A.: Pragmatic approach to query optimization. Int. J. Comput. Appl. 66(7), 32 (2013)
Kumar, M., Batra, N., Aggarwal, H.: Cache-based query optimization approach in distributed database. Int. J. Comput. Sci. Issues 9(6), 389–395 (2012)
Seema, P.Kaur: Query optimization algorithm based on relational algebra equivalence transformation. Int. J. Eng. Manag. Sci. 4(3), 326–331 (2013)
Li, X., Li, D., Gao, H.Z., Yao, L.: Study of query of distributed database based on relation semi-join. In: 2010 International Conference on Computer Design and Applications (ICCDA), IEEE, vol. 1, pp. V1–V134 (2010)
Aljanaby, A., Abuelrub, E., Odeh, M.: A survey of distributed query optimization. Int. Arab J. Inf. Technol. 2(1), 48–57 (2005)
Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. (CSUR) 32(4), 422–469 (2000)
Apers, P.M.G., Hevner, A.R., Yao, S.B.: Optimization algorithms for distributed queries. IEEE Trans. Softw. Eng. 1, 57–68 (1983)
Najjar, F., Slimani, Y.: Extension of the one-shot semijoin strategy to minimize data transmission cost in distributed query processing. Inf. Sci. 114(1–4), 1–21 (1999)
Azari, I.: Efficient execution of query in distributed database systems. In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), pp. 428–433 (2010)
Thangam, A.R., Peter, S.J.: Efficient processing and optimization of queries with set predicates using Filtered Bitmap Index. Int. J. Comput. Sci. Eng. 5(11), 33–29 (2017)
Asghari, K., Mamaghani, A.S., Meybodi, M.R.: An Evolutionary Algorithms for Query Optimization in Database. Innovative Techniques in Instruction, E-Learning, E-Assessment and Education, pp. 249–254. Springer, New York (2008)
Butey, P.K., Meshram, S., Sonolikar, R.L.: Query optimization using GA. J. Inf. Technol. Eng. 3(1), 44–51 (2012)
Hongxing, L., Bingzhang, L.: A Tree-based genetic algorithm for distributed database. In: Proceedings of the IEEE International Conference, on Automation and Logistics, Qingdao China, pp. 2614–2618 (2008)
Barker, K., Jun, D., Alhajj, R.: Genetic algorithm based approach to database vertical partition. J. Intell. Inf. Syst. 26, 167–183 (2006)
Golshanara, L., Mohammad, S., Rankoohi, T.R., Shah-Hosseini, H.: A multi-colony ant algorithm for optimizing join queries in distributed database systems. Knowl. Inf. Syst. 39(1), 175–206 (2013)
Gomathi, R., Sharmila, D.: A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(8), 1519–1524 (2014)
Padia, S., Khulge, S., Gupta, A., Khadilikar, P.: Query optimization strategies in distributed databases. Int. J. Comput. Sci. Inf. Technol. 6(5), 4228–4234 (2015)
Joshi, M., Srivastava, P.R.: Query optimization: an intelligent hybrid approach using cuckoo and tabu search. Int. J. Intell. Inf. Technol. (IJIIT) 9(1), 40–55 (2013)
Wagh, A., Nemade, V.: Query optimization using modified ant colony algorithm. Int. J. Comput. Appl. 167(2), 29–33 (2017)
Tiwari, P., Chande, S.V.: Optimization of distributed database queries using hybrids of ant colony optimization algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6), 609–614 (2013)
Sharma, M., Singh, G., Singh, R., Singh, J.: Design and analysis of stochastic query optimizer for biobank databases. In: 2015 15th International Conference on Computational Science and Its Applications (ICCSA), pp. 47–51. IEEE (2015)
Raushan, Y., Welekar, A.R.: Distributed query optimization using hybrid ant colony algorithm. Int. J. Comput. Sci. Commun. Netw. 5(3), 212–215 (2015)
Xu, Z., Tu, Y.C., Wang, X.: PET: reducing database energy cost via query optimization. Proc. VLDB Endow. 5(12), 1954–1957 (2012)
Lang, W., Kandhan, R., Patel, J.M.: Rethinking query processing for energy efficiency: slowing down to win the race. IEEE Data Eng. Bull. 34(1), 12–23 (2011)
Roukh, A., Bellatreche, L., Tziritas, N., Ordonez, C.: Energy-aware query processing on a parallel database cluster node. In: International Conference on Algorithms and Architectures for Parallel Processing, pp. 260–269. Springer, Cham (2016)
Guo, B., Yu, J., Liao, B., Yang, D., Lu, L.: A green framework for DBMS based on energy-aware query optimization and energy-efficient query processing. J. Netw. Comput. Appl. 84, 118–130 (2017)
Rosemark, R., Lee, W.C., Urgaonkar, B.: Optimizing energy-efficient query processing in wireless sensor networks. In: 2007 International Conference on Mobile Data Management, pp. 24–29. IEEE (2007)
Jamsutkar, K., Patil, V., Meshram, B.B.: Query processing strategies in distributed database. Blue Ocean Res. J. 2(7), 71–77 (2013)
Arebi, P., Gonbadipoor, N.: A genetic algorithm for query optimization in database grid by dynamic cost estimation. In: 13th International Conference on Computer Modelling and Simulation, pp. 81–86 (2011)
Ghaemi, R., Fard, M., Tabatabaee, H., Sadeghizadeh, M.: Evolutionary query optimization for heterogeneous distributed database systems. Int. J. Comput. Inf. Eng. 2(7), 34–40 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, M., Singh, G. & Singh, R. A review of different cost-based distributed query optimizers. Prog Artif Intell 8, 45–62 (2019). https://doi.org/10.1007/s13748-018-0154-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-018-0154-8