Skip to main content
Log in

Estimating attraction basin sizes of combinatorial optimization problems

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Given a particular instance of a combinatorial optimization problem, the knowledge about the attraction basin sizes can help to analyze the difficulty encountered by local search algorithms while solving it. As calculating these sizes exhaustively is computationally intractable, we focus on methods for their estimation. The accuracy of some of these estimation methods depends on the way in which the sample of solutions of the search space is chosen. In this paper, we propose a novel sampling method, which incorporates the knowledge obtained by the already explored solutions into the sampling strategy. So, in contrast to those that already exist, our method can adapt its behavior to the characteristics of the particular attraction basin. We apply our proposal to a number of instances of three famous problems: the quadratic assignment problem, the linear ordering problem and the permutation flow shop scheduling problem. We consider permutation sizes \(n = 10\) and \(n = 12\) and three different neighborhoods: adjacent swap, 2-exchange and insert, and observe that the new method generally outperforms those that already exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, A., Lane, P., Steinhofel, K.: Combinatorial landscape analysis for k-SAT instances. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 2498 –2504 (2008)

  2. Albrecht, A., Lane, P., Steinhofel, K.: Analysis of local search landscapes for k-SAT instances. Math. Comput. Sci. 3(4), 465–488 (2010)

    Article  MathSciNet  Google Scholar 

  3. Alyahya, K., Rowe, J.E.: Phase transition and landscape properties of the number partitioning problem. In: Evolutionary Computation in Combinatorial Optimisation: 14th European Conference, EvoCOP 2014, Granada, Spain, April 23–25, 2014, Revised Selected Papers, pp. 206–217. Springer, Berlin (2014)

    Google Scholar 

  4. Angel, E., Zissimopoulos, V.: On the hardness of the quadratic assignment problem with metaheuristics. J. Heuristics 8(4), 399–414 (2002)

    Article  Google Scholar 

  5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Glob. Optim. 10(4), 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  6. Caruana, R., Mullin, M.: Estimating the number of local minima in big, nasty search spaces. In: Proceedings of IJCAI-99 Workshop on Statistical Machine Learning for Large-Scale Optimization (1999)

  7. Chicano, F., Daolio, F., Ochoa, G., Verel, S., Tomassini, M., Alba, E.: Local optima networks, landscape autocorrelation and heuristic search performance. In: Proceedings of Parallel Problem Solving from Nature, PPSN XII. Lecture Notes in Computer Science, vol. 7492, pp. 337–347. Springer (2012)

  8. Eremeev, A.V., Reeves, C.R.: Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2279, pp. 31–40. Springer, Berlin (2002)

    Chapter  Google Scholar 

  9. Eremeev, A.V., Reeves, C.R.: On confidence intervals for the number of local optima. In: Proceedings of EvoWorkshops 2003, pp. 224–235 (2003)

    Google Scholar 

  10. Garnier, J., Kallel, L.: How to detect all maxima of a function. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 343–370. Springer, London (2001)

    Google Scholar 

  11. Grundel, D., Krokhmal, P., Oliveira, C., Pardalos, P.: On the number of local minima for the multidimensional assignment problem. J. Comb. Optim. 13, 1–18 (2007)

    Article  MathSciNet  Google Scholar 

  12. Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for estimating the number of local optima in combinatorial optimization problems. Evol. Comput. 21(4), 625–658 (2013)

    Article  Google Scholar 

  13. Hernando, L., Mendiburu, A., Lozano, J.A.: Estimating Attraction Basin Sizes, pp. 458–467. Springer, Cham (2016)

    Google Scholar 

  14. Hernando, L., Pascual, J.A., Mendiburu, A., Lozano, J.A.: A study on the complexity of TSP instances under the 2-exchange neighbor system. In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2011, pp. 15–21 (2011)

  15. Irurozki, E., Calvo, B., Lozano, J.A.: An R package for permutations, Mallows and Generalized Mallows models. J. Stat. Softw. 3(4), 1–16 (2016)

  16. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12(3), 303–325 (2004)

    Article  Google Scholar 

  17. Merz, P., Freisleben, B.: Memetic algorithms for the travelling salesman problem. Complex Syst. 13(4), 297–345 (2001)

    MATH  Google Scholar 

  18. Morgan, R., Gallagher, M.: Using landscape topology to compare continuous metaheuristics: a framework and case study on edas and ridge structure. Evol. Comput. 20(2), 277–299 (2012)

    Article  Google Scholar 

  19. Moser, I., Gheorghita, M., Aleti, A.: Identifying features of fitness landscapes and relating them to problem difficulty. Evol. Comput. 25(3), 407–437 (2016)

    Article  Google Scholar 

  20. Ochoa, G., Chicano, F., Tinós, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 449–456. ACM (2015)

  21. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Genetic and Evolutionary Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12–16, 2008, pp. 555–562 (2008)

  22. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Clustering of local optima in combinatorial fitness landscapes. In: Learning and Intelligent Optimization, vol. 6683, pp. 454–457. Springer, Berlin (2012)

    Google Scholar 

  23. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes, Emergence, Complexity and Computation, vol. 6, pp. 233–262. Springer, Berlin (2014)

    Chapter  Google Scholar 

  24. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Parallel Problem Solving from Nature, PPSN XI: 11th International Conference, Kraków, Poland, September 11–15, 2010, Proceedings, Part I, pp. 104–113. Springer, Berlin (2010)

    Google Scholar 

  25. Prügel-Bennett, A., Tayarani-Najaran, M.H.: Maximum satisfiability: anatomy of the fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol. Comput. 16(3), 319–338 (2012)

    Article  Google Scholar 

  26. Reeves, C., Aupetit-Bélaidouni, M.: estimating the number of solutions for SAT problems. In: Yao, X., Burke, E., Lozano, J., Smith, J., Merelo-Guervós, J., Bullinaria, J., Rowe, J., Tino, P., Kabán, A., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN VIII. Lecture Notes in Computer Science, vol. 3242, pp. 101–110. Springer, Berlin (2004)

    Chapter  Google Scholar 

  27. Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)

    Article  MathSciNet  Google Scholar 

  28. Reeves, C.R.: Statistical properties of combinatorial landscapes: an application to scheduling problems. In: MIC’2001: Proceedings of the 4th Metaheuristic International Conference, pp. 691–695 (2001)

  29. Russo, D., Van Roy, B., Kazerouni, A., Osband, I.: A tutorial on Thompson sampling. arXiv preprint arXiv:1707.02038 (2017)

  30. Schiavinotto, T., Stützle, T.: The linear ordering problem: Instances, search space analysis and algorithms. J. Math. Model. Algorithms 3(4), 367–402 (2004)

    Article  MathSciNet  Google Scholar 

  31. Schiavinotto, T., Stützle, T.: The linear ordering problem: instances, search space analysis and algorithms. J. Math. Model. Algorithms 3(4), 367–402 (2005)

    Article  MathSciNet  Google Scholar 

  32. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990)

    Article  MathSciNet  Google Scholar 

  33. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  MathSciNet  Google Scholar 

  34. Tayarani-Najaran, M.H., Prügel-Bennett, A.: On the landscape of combinatorial optimization problems. IEEE Trans. Evol. Comput. 18(3), 420–434 (2014)

    Article  Google Scholar 

  35. Tayarani-Najaran, M.H., Prügel-Bennett, A.: Anatomy of the fitness landscape for dense graph-colouring problem. Swarm Evol. Comput. 22, 47–65 (2015)

    Article  Google Scholar 

  36. Tayarani-Najaran, M.H., Prügel-Bennett, A.: Quadratic assignment problem: a landscape analysis. Evol. Intel. 8(4), 165–184 (2015)

    Article  Google Scholar 

  37. Tomassini, M., Vérel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78(6), 66–114 (2008)

    Article  Google Scholar 

  38. Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: International Conference on Artificial Evolution (EA-2011), pp. 10–23. Angers, France (2011)

  39. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  40. Watson, J.P.: An introduction to fitness landscape analysis and cost models for local search. In: Gendreau, M., Potvin, J-Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 599–623. Springer, Berlin (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Research Groups 2013–2018 (IT-609-13) programs (Basque Government) and TIN2016-78365R (Spanish Ministry of Economy, Industry and Competitiveness). Anne Elorza holds a predoctoral grant (ref. PIF17/293) from the University of the Basque Country UPV/EHU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Elorza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elorza, A., Hernando, L., Mendiburu, A. et al. Estimating attraction basin sizes of combinatorial optimization problems. Prog Artif Intell 7, 369–384 (2018). https://doi.org/10.1007/s13748-018-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-018-0156-6

Keywords

Navigation