Abstract
Diabetes and cancer are two major life-threatening human chronic disorders that have a high rate of disability and mortality. These diseases have been diagnosed using different deterministic and nature inspired computing algorithms. Here, an effort is made to represent the role of five different insect-based nature inspired computing algorithms [ant colony optimization (ACO), artificial bee colony (ABC), glow-worm swarm optimization (GSO), firefly algorithm (FA) and antlion optimization (ALO)] used for the diagnosis of these two chronic disorders. Initially, the basic statistics of diabetes and cancer patients have been presented. The main intention of this study lies in exploring the usage and performance of ACO, ABC, GSO, FA and ALO in diagnosing different stage and types of diabetes and cancer. It has been revealed that most of the diabetes diagnosis work has been carried out using ACO followed by ABC. As far as cancer is concerned, the three insect-based algorithms, i.e. ACO, ABC and FA, have been also effectively employed for detection of breast, lung, liver, prostate and ovarian cancer. In general, most of the disease diagnostic work has been carried out using ACO, whereas GSO found to be least explored. The rate of predictive accuracy achieved using the hybridization of ACO and neural network is found to be more promising as compared to other individual or hybrid approaches. Likewise, for breast cancer, the amalgamated use of ABC and neural network is more productive. Similarly, the hybrid approach of ACO and neural network is also found useful for early prognosis of lung and gastric cancer. In general, the diagnostic results obtained using hybrid approaches are more promising than their individual use. However, several hybrid combinations are still needed to be explored for the diagnosis of diabetes and different types of cancer, viz. liver, gastric, ovarian, leukaemia as well as a brain tumour. Finally, there is also a scope to use and explore the efficiency of binary and chaotic variants of ACO, ABC, GSO, FA and ALO for the diagnosis of these two critical human disorders.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Raghupathi, W., Raghupathi, V.: An empirical study of chronic diseases in the united states: a visual analytics approach to public health. Int. J. Environ. Res. Public Health 15(3), 1–24 (2018)
Chronic diseases and their common risk factors, facing facts. https://www.who.int/chp/chronic_disease_report/media/Factsheet1.pdf (2005). Accessed 17 Feb 2018
Demmer, R.T., Barondess, J.A.: On the communicability of chronic diseases. Ann. Intern. Med. 168(1), 69–70 (2018)
Deepa, P., Sowndhararajan, K., Kim, S., Park, S.J.: A role of Ficus species in the management of diabetes mellitus: a review. J. Ethnopharmacol. 215, 210–232 (2018)
Herrick, B., Liebmann, J., Pieters, R.S.: Cancer as a chronic disease. In: Pieters, R,S., Liebmann, J. (eds.) Cancer Concepts: A Guidebook for the Non-Oncologist, pp.1–8 (2018)
Nilashi, M., Ibrahim, O., Dalvi, M., Ahmadi, H., shahmoradi, L.: Accuracy improvement for diabetes disease classification: a case on a public medical dataset. Fuzzy Inf. Eng. 9, 345–357 (2017)
Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M., Edmonds, M.: Complications of diabetes 2017. J. Diabetes Res. 2018, 1–4 (2018)
Anjali, K.: A review on the diagnosis of diabetes mellitus. Int. J. Digit. Appl. Contemp. Res. 4(1), 1–7 (2015)
Doumbouya, M.B., Kamsu-Foguem, B., Kenfack, H., Foguem, C.: A framework for decision making on tele-expertise with traceability of the reasoning. IRBM 36, 40–51 (2015)
Lorenzo Piemonte.: Type 2 Diabetes. https://idf.org/52-about-diabetes.html (2019). Accessed 10 Mar 2019
Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel, L.A., Pollak, M., Regensteiner, J.G., Yee, D.: Diabetes and cancer: a consensus report. CA Cancer J. Clin. 60(4), 207–221 (2010)
Auyang, Y.S.: Cancer causes and cancer research on many levels of complexity, pp. 1–14 (2006). http://www.creatingtechnology.org/biomed/cancer.pdf
Hu, F.B.: Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34(6), 1249–1257 (2011)
Ullah, M.F., Aatif, M.: The footprints of cancer development: cancer biomarkers. Cancer Treat. Rev. 35(3), 193–200 (2009)
Fitzmaurice, C., Allen, C., Barber, R.M., Barregard, L., Bhutta, Z.A., Brenner, H., Dicker, D.J., Chimed-Orchir, O., Dandona, R., Dandona, L., Fleming, T.: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3(4), 524–548 (2017)
Centres for Disease Control and Prevention, 2017. National diabetes statistics report. https://www.cdc.gov/diabetes/data/statistics/statistics-report.html (2017). Accessed 18 Nov 2018
Kaur, P., Sharma, M.: Analysis of data mining and soft computing techniques in prospecting diabetes disorder in human beings: a review. IJPSR 9(7), 2700–2719 (2018)
Joshi, P., Dutta, S., Chaturvedi, P., Nair, S.: Head and neck cancers in developing countries. Rambam Maimonides Med. J. 5(2), e0009 (2014)
Kaur, P., Sharma, M.: A survey on using nature inspired computing for fatal disease diagnosis. Int. J. Inf. Syst. Model. Des. Vol. 8(2), 70–91 (2017)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1992)
Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
Beyer, H.G., Schwefel, H.P.: Evolution strategies—a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12, 702–713 (2008). https://doi.org/10.1109/tevc.2008.919004
Mucherino, A., Seref, O.: Monkey search: a novel metaheuristic search for global optimization. In: AIP Conference Proceedings, vol. 953(1), pp. 162–173 (2007)
Chou, Y.H., Kuo, S.Y., Yang, L.S., Yang, C.Y.: Next generation metaheuristic: jaguar algorithm. IEEE Access 6, 9975–9990 (2018)
Mirjalili, S., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016)
Odili, J.B., Kahar, M.N.M., Anwar, S.: African buffalo optimization: a swarm-intelligence technique. Procedia Comput. Sci. 76, 443–448 (2015)
Wang, G.G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5 (2015)
Ennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, pp. 1942–1948 (1995)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. Nat. Inspir. Coop. Strat. Optim. Stud. Comput. Intell. 284, 65–74 (2010)
Duman, E., Uysal, M., Alkaya, A.F.: Migrating birds optimization: a new metaheuristic approach and its performance on quadratic assignment problem. Inf. Sci. 217, 65–77 (2012)
Sur, C., Shukla, A.: New bio-inspired meta-heuristics-green herons optimization algorithm for optimization of travelling salesman problem and road network. In: International Conference on Swarm, Evolutionary, and Memetic Computing, pp. 168–179 (2013)
Hosseini, E.: Laying chicken algorithm: a new meta-heuristic approach to solving continuous programming problems. J. Appl. Comput. Math. 6(1), 1–8 (2017)
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)
Karaboga, D.: An Idea based on Honey Bee Swarm for Numerical Optimization Technical Report TR06. Erciyes University Press, Erciyes (2005)
Krishnanand, K.N., Ghose, D.: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings of Swarm Intelligence Symposium IEEE, pp. 84–91 (2005)
Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation—CEC9, vol. 2, pp. 1470–1477 (1999)
Yang, X.S.: Firefly Algorithm Nature-Inspired Metaheuristic Algorithms, pp. 79–90. Luniver Press, Cambridge (2008)
Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2015)
Qin, J.: A new optimization algorithm and its application—key cutting algorithm. In: IEEE International Conference on Grey Systems and Intelligent Services, pp. 1537–1541 (2009)
Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) International Conference in Swarm Intelligence, vol. 6145, pp. 355–364. Springer, Berlin, Heidelberg (2010)
Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population-based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)
Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)
Chen, J., Cai, H., Wang, W.: A new metaheuristic algorithm: car tracking optimization algorithm. Soft. Comput. 22(12), 3857–3878 (2018)
Mehrabian, A.R., Lucas, C.: A novel numerical optimization algorithm inspired by weed colonization. Ecol. Inform. 1(4), 355–366 (2006)
Uymaz, S.A., Tezel, G., Yel, E.: Artificial algae algorithm (aaa) for nonlinear global optimizations. Appl. Soft Comput. 31, 153–171 (2015)
Yang, X.-S.: Flower pollination algorithm for global optimization. Unconventional computation and natural computation. Lect. Notes Comput. Sci. 7445, 240–249 (2012)
Merrikh-Bayat, F.: The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl. Soft Comput. 33, 292–303 (2015)
Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, 232–237 (2010)
Sharma, M., Singh, G., Virk, R.S., Singh, G.: Design and comparative analysis of DSS queries in a distributed environment. In: International Computer Science and Engineering Conference (ICSEC), pp. 73–78. IEEE (2018)
Sharma, M., Singh, G., Singh, R.: Clinical decision support system query optimizer using hybrid firefly and controlled genetic algorithm. J. King Saud Univ. Comput. Inf. Sci. (2018). https://doi.org/10.1016/j.jksuci.2018.06.007
Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947–958 (2013)
Poo, M.-m., Du, J.L., Ip, N.Y., Xiong, Z.Q., Xu, B., Tan, T.: China brain project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron 92(3), 591–596 (2016)
Sharma, M., Singh, G., Singh, R.: Design and analysis of stochastic DSS query optimizers in a distributed database system. Egypt. Inform. J. 17(2), 161–173 (2016)
Sharma, M., Singh, G., Singh, R.: A review of different cost-based distributed query optimizers. Prog. Artif. Intell. 8(1), 45–62 (2019)
Arora, S., Singh, H., Sharma, M., Sharma, S., Anand, P.: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access 7, 26343–26361 (2019)
Nanda, S.J., Panda, G.: A survey on nature-inspired metaheuristic algorithms for partitional clustering. Swarm Evolut. Comput. 16, 1–18 (2014)
Pandey, A.C., Rajpoot, D.S., Saraswat, M.: Twitter sentiment analysis using hybrid cuckoo search method. Inf. Process. Manag. 53(4), 764–779 (2017)
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., Chouvarda, I.: Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15, 104–116 (2017)
Verma, P., Kaur, I., Kaur, J.: Review of diabetes detection by machine learning and data mining. Int. J. Adv. Res. Ideas Innov. Technol. 2(3), 1–5 (2016)
Al-Absi, H.R., Abdullah, A., Hassan, M.I., Shaban, K.B.: Hybrid intelligent system for disease diagnosis based on artificial neural networks, fuzzy logic, and genetic algorithms. In: International Conference on Informatics Engineering and Information Science, pp. 128–139 (2011)
Kharya, S.: Using data mining techniques for diagnosis and prognosis of cancer disease. Int. J. Comput. Sci. Eng. Inf. Technol. 2(2), 55–65 (2012)
Garg, J.: Review on implementation of ACO technique for leukaemia detection. Int. J. Adv. Res. Comput. Commun. Eng. 5(4), 859–862 (2016)
Theraulaz, G., Bonabeau, E., Gervet, J., Demeubourg, J.I.: Task differentiation in policies wasp colonies. A model for self-organizing groups of robots, from animals to animats. In: Proceedings of the First International Conference on Simulation of Adaptive behaviour, pp. 346–355 (1991)
Tomoya, S., Hagiwara, M.: Bee system: finding solution by a concentrated search, In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, pp. 3954–3959 (1997)
Curkovic, P., Jerbic, B.: Honey-bees optimization algorithm applied to the path planning problem. Int. J. Simul. Model. 6, 154–164 (2007)
Wedde, H.F., Zhang, M.: Beehive: An efficient faulttolerant routing algorithm inspired by honey bee behaviour. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) In International Workshop on Ant Colony Optimization and Swarm Intelligence, vol. 3172, pp. 83–94. Springer, Berlin, Heidelberg (2004)
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm, pp. 250–255. Cardiff University, Cardiff (2005)
Teodorović, D., Dell’Orco, M.: Bee colony optimization—a cooperative learning approach to complex transportation problems. In: Proceedings of the 10th EWGT Meeting and 16th Mini-EURO Conference, Poznan, Poland, pp. 51–60 (2005)
Yang, X.: Engineering optimizations via nature-inspired virtual bee algorithms. In: Yang, J., Alvarez, J. (eds.): IWINAC 2005, LNCS, pp. 317–323 (2005)
Roth, M., Wicker, S.: Termite: ad-hoc networking with stigmergy. In: Conference: Global Telecommunications, vol. 5, pp. 2937–2941(2003)
Afshar, A., Haddad, O.B., Mariño, M.A., Adams, B.J.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Frankl. Inst. 344(5), 452–462 (2007)
Baig, A., Rashid, M.: Honey bee foraging algorithm for multimodal and dynamic optimization problems. In: GECCO’07 Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 169–169 (2007)
Yang, C., Chen, J., Tu, X.: The algorithm of fast marriage in honey bees optimization and convergence analysis. In: Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2007, Jinan, China, pp. 1794–1799 (2007)
Lu, X., Zhou, Y.: A novel global convergence algorithm: bee collecting pollen algorithm. In: Huang, D.S., Wunsch, D.C., Levine, D.S., Jo, K.H. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science, vol. 5227, pp. 518–525 (2008)
Havens, T.C., Alexander, G.L., Abbott, C., Keller, J.M.: Roach infestation optimization. In: Conference: Swarm Intelligence Symposium. IEEE (2008)
Marinakis, Y., Marinaki, M., Matsatsinis, N.: A hybrid bumble bees mating optimization—GRASP algorithm for clustering. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS, LNCS, vol. 5572, pp. 549–556 (2009)
Akbari, R., Mohammadi, A, Ziarati, K.: In: IEEE 13th International Multitopic Conference. Islamabad, Pakistan (2009)
Feng, X., Lau, F.C.M., Gao, D.: A new bio-inspired approach to the travelling salesman problem. Complex Sci. Lect. Notes Inst. Comput. Sci. Soc. Inform. Telecommun. Eng. 5, 1310–1321 (2009)
Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26(2), 69–74 (2012)
Bitam, S., Mellouk, A.: Bee life-based multi constraints multicast routing optimization for vehicular ad hoc networks. J. Netw. Comput. Appl. 36, 981–991 (2013)
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)
Sharma, M., Singh, G., Singh, R.: Stark assessment of lifestyle based human disorders using data mining based learning techniques. IRBM 38(6), 305–324 (2017)
Karaboga, D., Ozturk, C.: A novel clustering approach: artificial bee colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)
Kumar, A., Khorwal, R.: Firefly algorithm for feature selection in sentiment analysis. Comput. Intell. Data Min. 556, 693–703 (2017)
Zheng, X., Fu, Y.: Ant colony optimization algorithm based on the immune strategy. In: Fourth International Symposium IEEE Computational Intelligence and Design (ISCID), vol. 2, pp. 275–278 (2011)
Dorigo, M., Maniezzo, V., Colorni A.: Positive feedback as a search strategy. Tech. rept. 91-016. Dipartimento di Elettronica, Politecnico di Milano, Italy (1991)
Ganji, M.F., Abadeh, M.S.: A fuzzy classification system based on ant colony optimization for diabetes disease diagnosis. Expert Syst. Appl. 38(12), 14650–14659 (2011)
Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, vol. 272, pp. 311–351. Springer, Cham (2019)
Lucic, P., Teodorovic, D.: Bee system: modelling combinatorial optimization transportation engineering problems by swarm intelligence. In: Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, pp. 441–445 (2001)
Abbass, H.A.: MBO: Marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 207–214 (2001)
Wedde, H.F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J., Jeruschkat, R.: BeeAdHoc: an energy efficient routing algorithm for mobile ad hoc networks inspired by bee behaviour. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 153–160 (2005)
Zhang, Y.D., Wu, L., Wang, S.: Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagn. Res. 116, 65–79 (2011)
Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)
Kumar, A., Kumar, D., Jarial, S.K.: A review on artificial bee colony algorithms and their applications to data clustering. Cybern. Inf. Technol. 17(3), 3–28 (2017)
Schiezaro, M., Pedrini, H.: Data feature selection based on Artificial Bee Colony algorithm. EURASIP J. Image Video Process. 2013(47), 1–8 (2013)
Bansal, J.C., Sharma, H., Jadon, S.S.: Artificial bee colony algorithm: a survey. Int. J. Adv. Intell. Paradig. 5(1–2), 123–159 (2013)
Kalaiselvi, T., Nagaraja, P., Abdul Basith, Z.: A review on glowworm swarm optimization. Int. J. Inf. Technol. (IJIT) 3(2), 49–56 (2017)
Chakraborty, A., Kar, A.K.: Swarm intelligence: A review of algorithms. In: Patnaik, S., Yang, X.S., Nakamatsu, K. (eds.) Nature-Inspired Computing and Optimization, vol. 10, pp. 475–494. Springer, Cham (2017)
Yang, X.-S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)
Ali, N., Othman, M.A., Husain, M.N., Misran, M.H.: A review of the firefly algorithm. ARPN J. Eng. Appl. Sci. 9(10), 1732–1736 (2014)
Mani, M., Bozorg-Haddad, O., Chu, X.: Ant lion optimizer (ALO) algorithm. In: Bozorg-Haddad, O. (ed.) Advanced Optimization by Nature-Inspired Algorithms, vol. 720, pp. 105–116. Springer, Singapore (2018)
Ganji, M.F., Abadeh, M.S.: Using fuzzy ant colony optimization for diagnosis of diabetes disease. In: Electrical Engineering (ICEE) 18th Iranian Conference, pp. 501–505 (2010)
Amudha, K., Balu, S., Sakthivel, K.: Performance analysis of firefly search fuzzy c-means for detecting lung cancer nodules. Int. Res. J. Pharm. 8(9), 89–94 (2017)
Bergholt, M.S., Zheng, W., Lin, K., Ho, K.Y., The, M., Yeoh, K.G., Yan So, J.B., Huang, Z.: In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. Int. J. Cancer 128(11), 2673–2680 (2011)
Sivakumar, R., Karnan, M.: Diagnose breast cancer through mammograms using EABCO algorithm. Int. J. Eng. Technol. 4(5), 302–307 (2012)
Beloufa, F., Chikh, M.A.: Design of fuzzy classifier for diabetes disease using modified artificial honey bee colony algorithm. Comput. Methods Programs Biomed. 112(1), 92–103 (2013)
Mazen, F., AbulSeoud, R.A., Gody, A.M.: Genetic algorithm and firefly algorithm in a hybrid approach for breast cancer diagnosis. Int. J. Comput. Trends Technol. 32(2), 62–68 (2016)
Nazarian, M., Dezfouli, M.A., Haronabadi, A.: Classification of breast cancer samples using the artificial bee colony algorithm. Int. J. Comput. Appl. Technol. Res. 2(5), 522–525 (2013)
Srivastava, A., Chakrabarti, S., Das, S., Ghosh, S., Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. Adv. Intell. Syst. Comput. 201, 485–494 (2012)
Krawczyk, B., Filipczuk, P.: Cytological image analysis with firefly nuclei detection and hybrid one class classification decomposition. Eng. Appl. Artif. Intell. 31, 126–135 (2018)
Deoskar, P., Singh, D.D., Singh, D.A.: An efficient support based ant colony optimization technique for lung cancer data. Int. J. Adv. Res. Comput. Commun. Eng. 2(9), 3575–3581 (2013)
Uzer, M.S., Yilmaz, N., Inan, O.: Feature selection method based on artificial bee colony algorithm and support vector machines for medical datasets classification. Sci. World J. 2013, 1–10 (2013)
Sunny, S., Pratheba, M.: Detection of breast cancer using the firefly algorithm. Int. J. Emerg. Technol. Eng. 1(3), 84–86 (2014)
Karnan, S.M.: Medical image segmentation using firefly algorithm and enhanced bee colony optimization. Bonfring Int. J. Adv. Image Process. 316–321 (2014)
Patankar, V., Nawgaje, D., Kanphade, R.: An implementation of ant colony optimization technique for cancer diagnosis. Int. J. Curr. Eng. Technol. 4, 568–570 (2014)
Sadeghipour, E., Sahragard, N., Sayebani, M.R., Mehdizadeh, R.: Breast cancer detection based on a hybrid approach of firefly algorithm and intelligent systems. Indian J. Fundam. Appl. Life Sci. 5, 468–472 (2015)
Shah, H., Chiromab, H., Herawan, T., Ghazalic, R.: An Efficient Bio-Inspired Bees Colony for Breast Cancer Prediction. Lecture Notes in Electrical Engineering, pp. 1–9. Springer, Berlin (2015)
Moosa, J.M., Shakur, R., Kaykobad, M., Rahman, M.S.: Gene selection for cancer classification with the help of bees. BMC Med. Genom. 9(2), 136–204 (2015)
Pourmandi, M., Addeh, J.: Breast cancer diagnosis using fuzzy feature and optimized neural network via the Gbest-guided artificial bee colony algorithm. Comput. Res. Prog. Appl. Sci. Eng. 1(4), 152–159 (2015)
Cinar, M., Engin, M., Engin, E.Z., Ziya, Y.: Early prostate cancer diagnosis by using artificial neural networks and support vector machine. Experts Syst. Appl. 36(3), 6357–6361 (2009)
Rasha Abdul Razak, A.P., Harish Binu, K.P.: Lung anomaly detection system (LADS) using SVM based on the firefly algorithm. Int. J. Sci. Res. 6(7), 540–544 (2015)
Parveen, S., Kavitha, C.: Segmentation of CT Lung nodules using FCM with firefly search algorithm. In: IEEE Sponsored 2nd International Conference on Innovations in Information Embedded and Communication Systems, pp. 1–6 (2015)
Kohad, R., Ahire, V.: Application of machine learning techniques for the diagnosis of lung cancer with ANT colony optimization. Int. J. Comput. Appl. 113(18), 34–41 (2015)
Malathi, K., Nedunchelian, R.: Detecting and classifying diabetic retinopathy in fundus retina images using artificial neural networks-based firefly clustering algorithm. ARPN J. Eng. Appl. Sci. 11(5), 3419–3426 (2016)
Sayed, G.I., Soliman, M., Hassanien, A.E.: Bio-inspired swarm techniques for thermogram breast cancer detection. In: Chapter from Medical Imaging in Clinical Applications, Algorithmic and Computer-Based Approaches, pp. 487–506 (2016)
Zamani, H., Nadimi-Shahrak, M.H.: Swarm Intelligence approach for breast cancer diagnosis. Int. J. Comput. Appl. 151(1), 40–44 (2016)
Tangod, K., Kulkarni, G.: Multi-agent-based diabetes diagnosing and classification with the aid of hybrid firefly-neural network. Int. J. Intell. Eng. Syst. 10(2), 68–77 (2017)
Kalavathi, P., Dhavapandiammal, A.: Segmentation of Lung Tumor in CT scan images using FA-FCM. IOSR J. Comput. Eng. 18(5), 74–79 (2016)
Manna, P., Si, T.: Brain MRI segmentation for lesion detection using clustering with the fire-fly algorithm. Artif. Intell. Evolut. Comput. Eng. Syst. 394, 1347–1355 (2016)
Ushanandhini, S., Uma, S.: An improved firefly algorithm based diabetes detection approach. Int. J. Res. Comput. Appl. Robot. 4(4), 24–33 (2016)
Chan, W.H., Mohamad, M.S., Deris, S.: An improved gSVM-SCADL2 with firefly algorithm for identification of informative genes and pathways. Int. J. Bioinform. Res. Appl. 12(1), 72–93 (2016)
Mallikarjun, T.N.V., Gundabathina, J.: Fuzzy classification rules generation with ant colony optimization for diabetes diagnosis. Int. J. Emerg. Trends Technol. Comput. Sci. 5, 39–44 (2016)
Singh, A., Kumar, D.: Novel ABC based training algorithm for ovarian cancer detection using neural network. In: International Conference on Trends in Electronics and Informatics, pp. 94–597 (2017)
Kumar, K.S., Arthanariee, A.M.: Breast cancer risk evaluation by firefly optimization. Int. J. Eng. Technol. Sci. Res. 4(8), 214–219 (2017)
Senapati, M.R., Dash, P.K.: Local linear wavelet neural network-based breast tumour classification using firefly algorithm. Neural Comput. Appl. 22(7), 1591–1598 (2013)
Banu, P.K.N., Azar, A.T., Inbarani, H.H.: Fuzzy firefly clustering for a tumour and cancer analysis. Int. J. Model. Identif. Control 27(2), 92–103 (2017)
Rajinikanth, V., Raja, N.S.M., Kamalanand, K.: Firefly algorithm assisted segmentation of tumour from brain MRI using Tsallis function and Markov random field. J. Control Eng. Appl. Inform. 19(3), 97–106 (2017)
Haritha, R., Suresh Babu, D., Sammulal, P.: A hybrid approach for prediction of type-1 and type-2 diabetes using firefly and cuckoo search algorithms. Int. J. Appl. Eng. Res. 13(2), 896–907 (2018)
Hassanien, A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)
Mostafa, A., Houssein, E.H., Houseni, M., Hassanein, A.E., Hefny, H.: Evaluating swarm optimization algorithms for segmentation of liver images. In: Hassanien, A., Oliva, D. (eds.) Advances in Soft Computing and Machine Learning in Image Processing, vol. 730, pp. 41–62. Springer, Cham (2018)
Singh, A., Gupta, G.: ANT_FDCSM: A novel fuzzy rule miner derived from ant colony meta-heuristic for diagnosis of diabetic patients. J. Intell. Fuzzy Syst. 36(2), 1–14 (2018)
Chiang, Y.-m., Chiang, H.-m., lin, S.-Y.: The application of ant colony optimization for gene selection in microarray-based cancer classification. In: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, pp. 4001-4006 (2008)
Sivakumar, R., Karnan, M.: Diagnose breast cancer through mammograms using eabco algorithm. Int. J. Eng. Technol. 4, 302–307 (2012)
Umamaheswari, T.S., Sumathi, P.: Enhanced firefly algorithm (EFA) based gene selection and adaptive neuro neutrosophic inference system (ANNIS) prediction model for detection of circulating tumour cells (CTCs) in breast cancer analysis. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2183-2
Soleimani, V., Vincheh, F.H.: Improving ant colony optimization for brain MRI image segmentation and brain tumour diagnosis. In: First Iranian Conference of Pattern Recognition and Image Analysis (PRIA), pp. 1–6 (2013)
Fiuzy, G., Qarehkhani, A., Haddadnia, J., Vahidi, J., Varharam, H.: Introduction of a method to diabetes diagnosis according to optimum rules in fuzzy systems based on combination of data mining algorithm (D-T), evolutionary algorithms (ACO) and artificial neural networks (NN). J. Math. Comput. Sci. 6, 272–285 (2013)
Shukla, R., Motwani, D.: Cancer detection using frequency pattern ant colony optimization. Int. J. Eng. Dev. Res. 2, 3922–3927 (2014)
Schaefer, G.: ACO classification of thermogram symmetry features for breast cancer diagnosis. Memet. Comput. 6(3), 207–212 (2014)
Anto, S., Chandramathi, S.: An expert system for breast cancer diagnosis using fuzzy classifier with ANT colony optimization. Aust. J. Basic Appl. Sci. 9(13), 172–177 (2015)
Christopher, T., Jamera, B.J.: A study on mining lung cancer data for increasing or decreasing disease prediction value by using ant colony optimization techniques. In: Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications (2015)
Reddy, G.T., Khare, N.: Hybrid firefly-bat optimized fuzzy artificial neural network based classifier for diabetes diagnosis. Int. J. Intell. Eng. Syst. 10(4), 18–27 (2017)
Gupta, A., Jayaraman, V.K., Kulkarni, B.D.: Feature selection for cancer classification using ant colony optimization and support vector machines. In: Analysis of Biological Data: A Soft Computing Approach, pp. 259–280. ser. World Scientific, Singapore (2006)
Rashmi, S.S.: Hybrid model using unsupervised filtering based on ant colony optimization and multiclass SVM by considering the medical data set. Int. Res. J. Eng. Technol. 4(6), 2565–2571 (2017)
Selvanambi, R., Natarajan, J., Karuppiah, M.: Lung cancer prediction using a higher-order recurrent neural network based on glowworm swarm optimization. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3824-3
Fallahzadeh, O., Dehghani-Bidgoli, Z., Assarian, M.: Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med. Sci. 33, 1–8 (2018)
Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). Ph.D. thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)
Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)
Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Stützle, T., Hoos, H.H.: MAXMAX–MINMIN ant system. Future. Gener. Comput. Syst. 16(8), 889–914 (2000)
Zhang, Y-D., Lenan, W.: Weights Optimization of FNN by Scaled Chaotic ABC Algorithm. Int. J. Digit. Content Tech. Appl. 6(13), 132–140 (2012)
Mo, X., Li, X., Zhang, Q.: The variation step adaptive Glowworm swarm optimization algorithm in optimum log interpretation for reservoir with complicated lithology. In: 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), IEEE, pp. 1044–1050 (2016)
Singh, A., Deep, K.: New variants of glowworm swarm optimization based on step size. Int. J. Syst. Assur. Eng. Manag. 6(3), 286–296 (2015)
Kilic, H., Yuzgec, U.: Improved antlion optimization algorithm via tournament selection. In: Proceedings of the 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), Girne, Cyprus, 16–17 IEEE, Piscataway, NJ, USA, pp. 200–205 (2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gautam, R., Kaur, P. & Sharma, M. A comprehensive review on nature inspired computing algorithms for the diagnosis of chronic disorders in human beings. Prog Artif Intell 8, 401–424 (2019). https://doi.org/10.1007/s13748-019-00191-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-019-00191-1