Skip to main content

Classification of ventricular arrhythmias using empirical mode decomposition and machine learning algorithms

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Ventricular arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF) are the main life-threatening arrhythmias which have to be detected accurately by designing automated system. In this work, we propose a novel method based on ensemble empirical mode decomposition to decompose the ECG signal and classified with decision tree classifier and support vector machine (SVM) for discriminating the VT/VF conditions using informative ranked features. Total fifty-seven records of ECG signals from Creighton University Ventricular Tachyarrhythmia Database (CUDB) and the MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB) database of PhysioNet were taken for evaluation. We obtained the sensitivity of 97.74%, specificity of 99% and accuracy of 98.69% in C4.5 classifier, whereas the accuracy of 90.52% was achieved with SVM classifier. These results indicate that the C4.5 algorithm is a superior approach for identification of cardiac arrhythmia class. The proposed system is an effective method that may be used to assist in decision support system in clinical practice for accurate recognition of ventricular arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mehra, R.: Global public health problem of sudden cardiac death. J. Electrocardiol. 6, 118–122 (2007)

    Article  MathSciNet  Google Scholar 

  2. Collis, R., Elliott, P.M.: Sudden cardiac death in inherited cardiomyopathy. Int. J. Cardiol. 237, 56–59 (2017)

    Article  Google Scholar 

  3. Pavlicek, V., Kindermann, I., Wintrich, J., Mahfoud, F., Ukena, C.: Ventricular arrhythmias and myocardial inflammation: long-term follow-up of patients with suspected myocarditis. Int. J. Cardiol. 274, 132–137 (2019)

    Article  Google Scholar 

  4. Li, Q., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61, 1607–1613 (2014)

    Article  Google Scholar 

  5. Jovanovic, B., Milenkovic, S., Pavlovic, M.: VT/VF detection method based on ECG signal quality assessment. J. Circuits Syst. Comput. 27, 1850169 (2018)

    Article  Google Scholar 

  6. Small, M., Yu, D., Simonotto, J., Harrison, R.G., Grubb, N., Fox, K.A.: Uncovering non-linear structure in human ECG recording. Chaos Solitons Fractals 13, 1755–1762 (2002)

    Article  Google Scholar 

  7. Arafat, M., Chowdhury, A., Hasan, M.: A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. Sig. Image Video Proc. 5, 1–10 (2011)

    Article  Google Scholar 

  8. Jahmunah, V., Oh, S.L., Wei, J.E., Ciaccio, E.J., Chua, K., San, T.R., Acharya, U.R.: Computer-aided diagnosis of congestive heart failure using ECG signals: review. Phys. Med. 62, 95–104 (2019)

    Article  Google Scholar 

  9. Mehta, S.S., Saxena, S.C., Verma, H.K.: Computer-aided interpretation of ECG for diagnostics. Int. J. Syst. Sci. 27, 43–58 (1996)

    Article  MATH  Google Scholar 

  10. Sang-Hong, L., Kyung-Yong, C., Joon, S.: Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis. Pers. Ubiquitous Comp. 18, 1315–1324 (2014)

    Article  Google Scholar 

  11. Mateo, C., Talavera, J.A.: Short-time Fourier transform with the window size fixed in the frequency domain. Dig. Sig. Proc. 77, 13–21 (2018)

    Article  MathSciNet  Google Scholar 

  12. Khadra, L., Fahoum, A.S., Nashash, H.A.: Detection of life-threatening cardiac arrhythmias using the wavelet transformation. Med. Biol. Eng. Comput. 35, 625–632 (1997)

    Article  Google Scholar 

  13. Saxena, S.C., Kumar, V., Hamde, S.T.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33, 1073–1085 (2002)

    Article  MATH  Google Scholar 

  14. Wei, Y., Meng, Q., Zhang, Q., Wang, D.: Detecting ventricular fibrillation and ventricular tachycardia for small samples based on EMD and symbol entropy. Intel. Comp. Theor. App. 9771, 18–27 (2016)

    Google Scholar 

  15. Yang, X., Dong, W., Weigong, Z., Peng, P., Lihang, F.: Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomed. Signal Proc. Cont. 39, 219–229 (2018)

    Article  Google Scholar 

  16. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Progr. Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  17. Qiao, L., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61, 1607–1613 (2014)

    Article  Google Scholar 

  18. Desai, U., Nayak, C.G., Seshikala, G.: Application of ensemble classifiers in accurate diagnosis of myocardial ischemia conditions. Prog. Artif. Intell. 6, 245–254 (2017)

    Article  Google Scholar 

  19. Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A., Rojo-Alvarez, J.L.: Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61, 832–840 (2014)

    Article  Google Scholar 

  20. Thakor, N.V., Zhu, Y.S., Pan, K.Y.: Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans. Biomed. Eng. 37, 837–843 (1990)

    Article  Google Scholar 

  21. Clayton, R.H., Murray, A., Campbell, R.W.: Recognition of ventricular fibrillation using neural networks. Biolog. Eng. Comput. 32, 217–220 (1994)

    Article  Google Scholar 

  22. Mazomenos, E.B., Biswas, D., Acharyya, A., Chen, T., Maharatna, K., Rosengarten, J., Morgan, J., Curzen, N.: A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Health Inform. 17, 459–469 (2013)

    Article  Google Scholar 

  23. Sahoo, S., Mohanty, M., Behera, S., Sabut, S.K.: ECG beat classification using empirical mode decomposition and mixture of features. J. Med. Eng. Technol. 41, 652–661 (2017)

    Article  Google Scholar 

  24. Duverney, D., Gaspoz, J.M., Pichot, V.: High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25, 457–462 (2002)

    Article  Google Scholar 

  25. Anas, E.A., Lee, S.Y., Hasan, M.K.: Sequential algorithm for life-threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMed. Eng. OnLine 9, 43–64 (2010)

    Article  Google Scholar 

  26. Lee, S.H., Chung, K.Y., Lim, J.S.: Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis. Pers. Ubiquit. Comput. 18, 1315–1324 (2014)

    Article  Google Scholar 

  27. Majia, U., Mitra, M., Pal, S.: Automatic detection of atrial fibrillation using empirical mode decomposition and statistical approach. Proc. Technol. 10, 45–52 (2013)

    Article  Google Scholar 

  28. Arafat, M.A., Sieed, J., Hasan, M.K.: Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory. Comput. Biol. Med. 39, 1051–1057 (2009)

    Article  Google Scholar 

  29. Desai, U., Martis, R.J., Acharya, U.R., Nayak, C.G., Seshikala, G., Shetty, R.K.: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 16(01), 1640005 (2016)

    Article  Google Scholar 

  30. Desai, U., Martis, R.J., Nayak, C.G., Seshikala, G., Sarika, K., Shetty, R.K.: Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study. J. Mech. Med. Biol. 16(01), 1612 (2016)

    Article  Google Scholar 

  31. Desai, U., Nayak C. G., Seshikala, G.: An efficient technique for automated diagnosis of cardiac rhythms using electrocardiogram. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, (2016).

  32. Desai, U., Nayak C. G., Seshikala, G.: An application of EMD technique in detection of tachycardia beats. In: International Conference on Communication and Signal Processing (ICCSP). IEEE, (2016).

  33. Desai, U., Nayak, C.G., Seshikala, G., Martis, R.J., Fernandes, S.L.: Automated Diagnosis of Tachycardia Beats. Smart Computing and Informatics, pp. 421–429. Springer, Singapore (2018)

    Book  Google Scholar 

  34. Acharya, U.R., Fujita, H., Oh, S.L., Raghavendra, U., Tan, J.H., Adam, M., Gertych, A., Hagiwara, Y.: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener. Comput. Syst. 79, 952–959 (2018)

    Article  Google Scholar 

  35. Colominas, A., Schlotthauer, G., Torres, M.M.: Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Signal Process Control 14, 19–29 (2014)

    Article  Google Scholar 

  36. Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P., Mietus, J., Moody, G., Peng, C., Stanley, H.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)

    Article  Google Scholar 

  37. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A 45, 903–995 (1971)

    MATH  Google Scholar 

  38. Anas, E.A., Lee, S.Y., Hasan, M.K.: Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput. Biol. Med. 41, 110–114 (2011)

    Article  Google Scholar 

  39. Zhaohua, W., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  40. Mohanty, M., Sahoo, S., Biswal, P., Sabut, S.: Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomed. Signal Proc. Control 44, 200–208 (2018)

    Article  Google Scholar 

  41. Tigges, P., Kathmann, N., Engel, R.R.: Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings. Int. J. Med. Inform. 45, 175–184 (1997)

    Article  Google Scholar 

  42. Yu, S.J., Koh, P., Kwon, H., Kimg, D.S., Kim, H.K.: Hurst parameter based anomaly detection for intrusion detection system. In: International Conference on Computer and Information Technology, pp. 234–240, (2016).

  43. Tang, G., Wang, X., He, Y., Liu, S.: Rolling bearing fault diagnosis based on variational mode decomposition and permutation entropy. In: Proceedings of International Conference Ubiquitous Robots and Ambient Intel. pp. 626-631 (2016)

  44. Xie, H.B., Gao, Z.M., Liu, H.: Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Syst. Appl. 38, 3973–3981 (2011)

    Article  Google Scholar 

  45. Celikoglu, A., Tirnakli, U.: Skewness and kurtosis analysis for non-Gaussian distributions. Phys. A Stat. Mech. Its Appl. 499, 325–334 (2018)

    Article  MathSciNet  Google Scholar 

  46. Karegowda, A.G., Manjunath, A.S., Jayaram, M.A.: Comparative study of attribute selection using gain ratio and correlation-based feature selection. Int. J Info. Tech. Knowl Manag. 2, 271–277 (2010)

    Google Scholar 

  47. Chong, W.M., Goh, C.L., Bau, Y.T., Lee, K.C.: Fast numerical threshold search algorithm for C4.5. In: International Conference on Advance Applied Informatics, pp. 930–935 (2014)

  48. Zhu, J., Wang, C., Hu, Z., Kong, F.X., Liu, X.: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings. J. Mech. Eng. Sci. 231, 635–654 (2017)

    Article  Google Scholar 

  49. Balasundaram, K., Masse, S., Nair, K., Farid, T., Nanthakumar, K., Umapathy K.: Wavelet-based features for characterizing ventricular arrhythmias in optimizing treatment options. In: IEEE Conference on Engineering in Medical and Biology Society, pp. 969–972 (2011)

  50. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San, T.R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  51. Amann, A., Tratnig, R., Unterkofler, K.: Detecting ventricular fibrillation by time delay methods. IEEE Trans. Biomed. Eng. 54, 174–177 (2007)

    Article  Google Scholar 

  52. Sahoo, S., Subudhi, A., Dash, M., Sabut, S.: Automatic classification of cardiac arrhythmias based on hybrid features and decision tree algorithm. Int. J. Autom. Comput. 17, 551–561 (2020)

    Article  Google Scholar 

  53. Tripathy, R.K., Sharma, L.N., Dandapat, S.: Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40, 1–13 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Sabut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, M., Dash, M., Biswal, P. et al. Classification of ventricular arrhythmias using empirical mode decomposition and machine learning algorithms. Prog Artif Intell 10, 489–504 (2021). https://doi.org/10.1007/s13748-021-00250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-021-00250-6

Keywords