Abstract
Ventricular arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF) are the main life-threatening arrhythmias which have to be detected accurately by designing automated system. In this work, we propose a novel method based on ensemble empirical mode decomposition to decompose the ECG signal and classified with decision tree classifier and support vector machine (SVM) for discriminating the VT/VF conditions using informative ranked features. Total fifty-seven records of ECG signals from Creighton University Ventricular Tachyarrhythmia Database (CUDB) and the MIT-BIH Malignant Ventricular Arrhythmia Database (VFDB) database of PhysioNet were taken for evaluation. We obtained the sensitivity of 97.74%, specificity of 99% and accuracy of 98.69% in C4.5 classifier, whereas the accuracy of 90.52% was achieved with SVM classifier. These results indicate that the C4.5 algorithm is a superior approach for identification of cardiac arrhythmia class. The proposed system is an effective method that may be used to assist in decision support system in clinical practice for accurate recognition of ventricular arrhythmias.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mehra, R.: Global public health problem of sudden cardiac death. J. Electrocardiol. 6, 118–122 (2007)
Collis, R., Elliott, P.M.: Sudden cardiac death in inherited cardiomyopathy. Int. J. Cardiol. 237, 56–59 (2017)
Pavlicek, V., Kindermann, I., Wintrich, J., Mahfoud, F., Ukena, C.: Ventricular arrhythmias and myocardial inflammation: long-term follow-up of patients with suspected myocarditis. Int. J. Cardiol. 274, 132–137 (2019)
Li, Q., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61, 1607–1613 (2014)
Jovanovic, B., Milenkovic, S., Pavlovic, M.: VT/VF detection method based on ECG signal quality assessment. J. Circuits Syst. Comput. 27, 1850169 (2018)
Small, M., Yu, D., Simonotto, J., Harrison, R.G., Grubb, N., Fox, K.A.: Uncovering non-linear structure in human ECG recording. Chaos Solitons Fractals 13, 1755–1762 (2002)
Arafat, M., Chowdhury, A., Hasan, M.: A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. Sig. Image Video Proc. 5, 1–10 (2011)
Jahmunah, V., Oh, S.L., Wei, J.E., Ciaccio, E.J., Chua, K., San, T.R., Acharya, U.R.: Computer-aided diagnosis of congestive heart failure using ECG signals: review. Phys. Med. 62, 95–104 (2019)
Mehta, S.S., Saxena, S.C., Verma, H.K.: Computer-aided interpretation of ECG for diagnostics. Int. J. Syst. Sci. 27, 43–58 (1996)
Sang-Hong, L., Kyung-Yong, C., Joon, S.: Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis. Pers. Ubiquitous Comp. 18, 1315–1324 (2014)
Mateo, C., Talavera, J.A.: Short-time Fourier transform with the window size fixed in the frequency domain. Dig. Sig. Proc. 77, 13–21 (2018)
Khadra, L., Fahoum, A.S., Nashash, H.A.: Detection of life-threatening cardiac arrhythmias using the wavelet transformation. Med. Biol. Eng. Comput. 35, 625–632 (1997)
Saxena, S.C., Kumar, V., Hamde, S.T.: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33, 1073–1085 (2002)
Wei, Y., Meng, Q., Zhang, Q., Wang, D.: Detecting ventricular fibrillation and ventricular tachycardia for small samples based on EMD and symbol entropy. Intel. Comp. Theor. App. 9771, 18–27 (2016)
Yang, X., Dong, W., Weigong, Z., Peng, P., Lihang, F.: Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomed. Signal Proc. Cont. 39, 219–229 (2018)
Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Progr. Biomed. 127, 52–63 (2016)
Qiao, L., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61, 1607–1613 (2014)
Desai, U., Nayak, C.G., Seshikala, G.: Application of ensemble classifiers in accurate diagnosis of myocardial ischemia conditions. Prog. Artif. Intell. 6, 245–254 (2017)
Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A., Rojo-Alvarez, J.L.: Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61, 832–840 (2014)
Thakor, N.V., Zhu, Y.S., Pan, K.Y.: Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. IEEE Trans. Biomed. Eng. 37, 837–843 (1990)
Clayton, R.H., Murray, A., Campbell, R.W.: Recognition of ventricular fibrillation using neural networks. Biolog. Eng. Comput. 32, 217–220 (1994)
Mazomenos, E.B., Biswas, D., Acharyya, A., Chen, T., Maharatna, K., Rosengarten, J., Morgan, J., Curzen, N.: A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Health Inform. 17, 459–469 (2013)
Sahoo, S., Mohanty, M., Behera, S., Sabut, S.K.: ECG beat classification using empirical mode decomposition and mixture of features. J. Med. Eng. Technol. 41, 652–661 (2017)
Duverney, D., Gaspoz, J.M., Pichot, V.: High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25, 457–462 (2002)
Anas, E.A., Lee, S.Y., Hasan, M.K.: Sequential algorithm for life-threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMed. Eng. OnLine 9, 43–64 (2010)
Lee, S.H., Chung, K.Y., Lim, J.S.: Detection of ventricular fibrillation using Hilbert transforms, phase-space reconstruction, and time-domain analysis. Pers. Ubiquit. Comput. 18, 1315–1324 (2014)
Majia, U., Mitra, M., Pal, S.: Automatic detection of atrial fibrillation using empirical mode decomposition and statistical approach. Proc. Technol. 10, 45–52 (2013)
Arafat, M.A., Sieed, J., Hasan, M.K.: Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory. Comput. Biol. Med. 39, 1051–1057 (2009)
Desai, U., Martis, R.J., Acharya, U.R., Nayak, C.G., Seshikala, G., Shetty, R.K.: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 16(01), 1640005 (2016)
Desai, U., Martis, R.J., Nayak, C.G., Seshikala, G., Sarika, K., Shetty, R.K.: Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study. J. Mech. Med. Biol. 16(01), 1612 (2016)
Desai, U., Nayak C. G., Seshikala, G.: An efficient technique for automated diagnosis of cardiac rhythms using electrocardiogram. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, (2016).
Desai, U., Nayak C. G., Seshikala, G.: An application of EMD technique in detection of tachycardia beats. In: International Conference on Communication and Signal Processing (ICCSP). IEEE, (2016).
Desai, U., Nayak, C.G., Seshikala, G., Martis, R.J., Fernandes, S.L.: Automated Diagnosis of Tachycardia Beats. Smart Computing and Informatics, pp. 421–429. Springer, Singapore (2018)
Acharya, U.R., Fujita, H., Oh, S.L., Raghavendra, U., Tan, J.H., Adam, M., Gertych, A., Hagiwara, Y.: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener. Comput. Syst. 79, 952–959 (2018)
Colominas, A., Schlotthauer, G., Torres, M.M.: Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Signal Process Control 14, 19–29 (2014)
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P., Mietus, J., Moody, G., Peng, C., Stanley, H.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A 45, 903–995 (1971)
Anas, E.A., Lee, S.Y., Hasan, M.K.: Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput. Biol. Med. 41, 110–114 (2011)
Zhaohua, W., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)
Mohanty, M., Sahoo, S., Biswal, P., Sabut, S.: Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomed. Signal Proc. Control 44, 200–208 (2018)
Tigges, P., Kathmann, N., Engel, R.R.: Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings. Int. J. Med. Inform. 45, 175–184 (1997)
Yu, S.J., Koh, P., Kwon, H., Kimg, D.S., Kim, H.K.: Hurst parameter based anomaly detection for intrusion detection system. In: International Conference on Computer and Information Technology, pp. 234–240, (2016).
Tang, G., Wang, X., He, Y., Liu, S.: Rolling bearing fault diagnosis based on variational mode decomposition and permutation entropy. In: Proceedings of International Conference Ubiquitous Robots and Ambient Intel. pp. 626-631 (2016)
Xie, H.B., Gao, Z.M., Liu, H.: Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Syst. Appl. 38, 3973–3981 (2011)
Celikoglu, A., Tirnakli, U.: Skewness and kurtosis analysis for non-Gaussian distributions. Phys. A Stat. Mech. Its Appl. 499, 325–334 (2018)
Karegowda, A.G., Manjunath, A.S., Jayaram, M.A.: Comparative study of attribute selection using gain ratio and correlation-based feature selection. Int. J Info. Tech. Knowl Manag. 2, 271–277 (2010)
Chong, W.M., Goh, C.L., Bau, Y.T., Lee, K.C.: Fast numerical threshold search algorithm for C4.5. In: International Conference on Advance Applied Informatics, pp. 930–935 (2014)
Zhu, J., Wang, C., Hu, Z., Kong, F.X., Liu, X.: Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings. J. Mech. Eng. Sci. 231, 635–654 (2017)
Balasundaram, K., Masse, S., Nair, K., Farid, T., Nanthakumar, K., Umapathy K.: Wavelet-based features for characterizing ventricular arrhythmias in optimizing treatment options. In: IEEE Conference on Engineering in Medical and Biology Society, pp. 969–972 (2011)
Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San, T.R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)
Amann, A., Tratnig, R., Unterkofler, K.: Detecting ventricular fibrillation by time delay methods. IEEE Trans. Biomed. Eng. 54, 174–177 (2007)
Sahoo, S., Subudhi, A., Dash, M., Sabut, S.: Automatic classification of cardiac arrhythmias based on hybrid features and decision tree algorithm. Int. J. Autom. Comput. 17, 551–561 (2020)
Tripathy, R.K., Sharma, L.N., Dandapat, S.: Detection of shockable ventricular arrhythmia using variational mode decomposition. J. Med. Syst. 40, 1–13 (2016)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mohanty, M., Dash, M., Biswal, P. et al. Classification of ventricular arrhythmias using empirical mode decomposition and machine learning algorithms. Prog Artif Intell 10, 489–504 (2021). https://doi.org/10.1007/s13748-021-00250-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-021-00250-6