Abstract
Finding a parking space is a difficult challenge that drivers face on a daily basis in urban neighborhoods around the world. They often report that desirable spaces near to their destination are either unavailable or very expensive, extending further the search time and congesting even more city centers. Intelligent parking solutions can integrally solve this ongoing problem by better managing existing resources. They allow drivers to access real-time information on parking space availability, collected with different detection techniques (crowdsourcing, parking meters, sensors). Some of these systems also encompass opportunistic services, such as forecasting, needed to adapt to unforeseen dynamic situations. Hence, we presented, in this paper, a methodology for predicting car park occupancy rates using four different machine learning algorithms. Each of these methods is trained with four feature sets to exemplify how information quality impacts prediction accuracy. In addition to achieving high accuracy, it is absolutely crucial to interpret model outputs and analyze each individual feature’s importance. That's why we developed an explanation model based on SHAP values. We implemented our proposal exploiting five months of real-time parking data broadcast by Aarhus City Council. Results show that the best-obtained predictions are by far very accurate with a coefficient of determination (R2) that achieves 0.988 and a mean absolute error that doesn't exceed 2.021%, while requiring a very low computing time that is only 5 s.







































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- T :
-
Time
- D :
-
Day of week
- w :
-
Weather
- h :
-
Holiday
- T :
-
Temperature
- l :
-
Location
- D :
-
Distance
- E :
-
Event
- AFE:
-
Average forecast error
- R 2 :
-
Coefficient of determination
- P :
-
Parking price
- Pc:
-
Parking capacity
- Ro:
-
Rate of vehicles occupying
- Rl:
-
Rate of vehicles leaving
- Po:
-
Previous observations
- idA:
-
Area name
- idP:
-
Parking identifier
- POR:
-
Parking occupancy rate
- SDFE:
-
Standard deviation forecast error
- NAP:
-
Number of available places
- SP:
-
Survival probability
- Dt:
-
Duration time
- MAE:
-
Mean absolute error
- MAPE:
-
Mean absolute percentage error
- MSE:
-
Mean square error
- MNE:
-
Mean normalized error
- RMSE:
-
Root mean square error
- RRSE:
-
Root relative squared error
References
Khatoun, R., Zeadally, S.: Smart cities: concepts, architectures, research opportunities. Commun. ACM 59(8), 46–57 (2016). https://doi.org/10.1145/2858789
Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., Meijers, E.: Smart Cities: Ranking of European Medium-Sized Cities. Vienna University of Technology, Centre of Regional Science (SRF) (2007)
Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.: Foundations for Smarter Cities. IBM J. Res. Dev. 54(4), 1–16 (2010). https://doi.org/10.1147/JRD.2010.2048257
Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014). https://doi.org/10.1109/jiot.2014.2306328
Shoup, D.C.: Cruising for parking. Transp. Policy 13(6), 479–486 (2006). https://doi.org/10.1016/j.tranpol.2006.05.005
Giuffrè, T., Siniscalchi, S.M., Tesoriere, G.: "A novel architecture of parking management for smart cities. proc. Soc. behav Sci 53, 16–28 (2012). https://doi.org/10.1016/j.sbspro.2012.09.856
D. Ayala, O. Wolfson, B. Xu, B. DasGupta and J. Lin: "Pricing of parking for congestion reduction," In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, 2012, pp. 43–51, doi: https://doi.org/10.1145/2424321.2424328.
Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vairo, C.: Car parking occupancy detection using smart camera networks and deep learning. 2016 IEEE Symposium on Comput. Commun. (ISCC) Messina (2016). https://doi.org/10.1109/ISCC.2016.7543901
Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., Vairo, C.: Deep learning for decentralized parking lot occupancy detection. Expert Sys. Appl. (2017). https://doi.org/10.1016/j.eswa.2016.10.055
S. Yoo, P. Chong, T. Kim, J. Kang, D. Kim, C. Shin, K. Sung and B. Jang, "PGS: Parking Guidance System based on wireless sensor network," 3rd International Symposium on Wireless Pervasive Computing, 2008, pp. 218–222, doi: https://doi.org/10.1109/ISWPC.2008.4556200.
Roman, C., Liao, R., Ball, P., Ou, S., de Heaver, M.: Detecting on-street parking spaces in smart cities: performance evaluation of fixed and mobile sensing systems. IEEE Trans. Intell. Transp. Syst. 19(7), 2234–2245 (2018). https://doi.org/10.1109/TITS.2018.2804169
Yan, G., Yang, W., Rawat, D.B., Olariu, S.: SmartParking: a secure and intelligent parking system. IEEE Intell. Transp. Sys. Mag. Spring 3(1), 18–30 (2011). https://doi.org/10.1109/MITS.2011.940473
S. Ahmed, Soaibuzzaman, M. S. Rahman and M. S. Rahaman, "A Blockchain-Based Architecture for Integrated Smart Parking Systems," 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 2019, pp. 177–182, doi: https://doi.org/10.1109/PERCOMW.2019.8730772.
Caicedo, F.: The use of space availability information in ‘“PARC”’ systems to reduce search times in parking facilities. Transp. Res. C Emerg. Technol. 17, 60–68 (2009). https://doi.org/10.1016/J.TRC.2008.07.001
Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: "Crowdsourcing with Smartphones. In IEEE Internet Comput. 16(5), 36–44 (2012). https://doi.org/10.1109/MIC.2012.70
J. Kopecký and J. Domingue, "ParkJamJAM: Crowdsourcing parking availability information with linked data (DEMO)," Proc. Extended Semantic Web Conf., 2012, pp. 381–386.
A. Nandugudi, T. Ki, C. Nuessle and G. Challen: "PocketParker: Pocketsourcing parking lot availability," UbiComp 2014 - Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, pp. 963–973, doi: https://doi.org/10.1145/2632048.2632098.
B. Kifle, J. Villalobos, D. Riley and J. Quevedo-Torrero: "Crowdsourcing automobile parking availability sensing using mobile phones", Proc. Midwest Instruct. Comput. Symp, 2015, pp. 1–7.
R. Liao, C. Roman, P. Ball, S. Ou and L. Chen: "Crowdsourcing On-street Parking Space Detection," ArXiv, 2016, abs/1603.00441.
W. Viriyasitavat, P. Sangaroonsilp, J. Sumritkij and N. Tarananopas: 2015 Mobile crowdsourcing platform for intelligent car park systems, 2015 International Computer Science and Engineering Conference (ICSEC) Chiang Mai, , doi: https://doi.org/10.1109/ICSEC.2015.7401398.
T. Yan, B. Hoh, D. Ganesan, K. Tracton, T. Iwuchukwu, J.-S. Lee, CrowdPark: A Crowdsourcing-based Parking Reservation System for Mobile Phones. University of Massachusetts at Amherst Tech, 2011, Technical Report.
Atif, Y., Kharrazi, S., Jianguo, D., Andler, S.F.: Internet of things data analytics for parking availability prediction and guidance. Trans. Emerging Tel. Tech. 31, e3862 (2020). https://doi.org/10.1002/ett.3862
Xiao, J., Lou, Y., Frisby, J.: How likely am I to find parking? – A practical model-based framework for predicting parking availability. Transp. Res. Part B: Methodol. 112, 19–39 (2018). https://doi.org/10.1016/j.trb.2018.04.001
Surafel, T., Di Marzo Serugendo, G.: Cooperative multi-agent system for parking availability prediction based on time varying dynamic markov chains. J. adv. Transp. 2017, 1760842 (2017). https://doi.org/10.1155/2017/1760842
Beheshti, R., Sukthankar, G.: A hybrid modeling approach for parking and traffic prediction in urban simulations. AI & Soc. 30, 333–344 (2015). https://doi.org/10.1007/s00146-013-0530-7
Ji, Y., Tang, D., Blythe, P., Guo, W., Wang, W.: Short-term forecasting of available parking space using wavelet neural network model. IET Intel. Transport Syst. 9(2), 202–209 (2015). https://doi.org/10.1049/iet-its.2013.0184
Hsueh-Chan, L., Chen-Hao, L.: Prediction-based parking allocation framework in urban environments. Int. J. Geogr. Inf. Sci. (2020). https://doi.org/10.1080/13658816.2020.1721503
Sergio, D.M., Origlia, A.: Exploiting recurring patterns to improve scalability of parking availability prediction systems. Electronics 9, 838 (2020)
Zhang, W., Liu, H., Liu, Y., Zhou, J., Xiong, H.: Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. Proc. AAAI Conf. Artif. Intell. 34, 1186–1193 (2020). https://doi.org/10.1609/aaai.v34i01.5471
F. Richter, S. Di Martino and D. C. Mattfeld: "Temporal and Spatial Clustering for a Parking Prediction Service," 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, 2014, pp. 278–282, doi: https://doi.org/10.1109/ICTAI.2014.49.
F. Bock, S. Di Martino, and A. Origlia: "A 2-Step Approach to Improve Data-driven Parking Availability Predictions," In Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science (IWCTS’17), Association for Computing Machinery, New York, NY, USA, 2017, pp. 13–18, doi: https://doi.org/10.1145/3151547.3151550.
Fabusuyi, T., Hampshire, R., Hill, V., Sasanuma, K.: Decision analytics for parking availability in downtown Pittsburgh. INFORMS J. Appl. Anal. 44(3), 286–299 (2014). https://doi.org/10.1287/inte.2014.0743
A. Ionita, A. Pomp, M. Cochez, T. Meisen and S. Decker: "Where to Park? Predicting Free Parking Spots in Unmonitored City Areas," 8th International Conference on Web Intelligence, Mining and Semantics, Novi Sad, Serbia, 2018, pp. 1–12. 10, doi: 1145/3227609.3227648.
Y. Rong, Z. Xu, R. Yan and X. Ma, "Du-Parking: Spatio-Temporal Big Data Tells You Realtime Parking Availability," In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 646–654.
Y. Zheng, S. Rajasegarar and C. Leckie: "Parking availability prediction for sensor-enabled car parks in smart cities," 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 2015, pp. 1–6, doi: https://doi.org/10.1109/ISSNIP.2015.7106902.
Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., Karlaftis, M.G.: A Real-Time parking prediction system for smart cities. J. Intell. Transp. Sys. 20(2), 192–204 (2016). https://doi.org/10.1080/15472450.2015.1037955
J. Li, J. Li and H. Zhang, "Deep Learning Based Parking Prediction on Cloud Platform," 4th International Conference on Big Data Computing and Communications (BIGCOM), Chicago, IL, 2018, pp. 132–137, doi: https://doi.org/10.1109/BIGCOM.2018.00028.
Errousso, H., Malhene, N., Benhadou, S., Medromi, H.: Predicting car park availability for a better delivery bay management. Proc. Comput. Sci. 170, 203–210 (2020). https://doi.org/10.1016/j.procs.2020.03.026
D.H. Stolfi, E. Alba and X. Yao, "Predicting Car Park Occupancy Rates in Smart Cities," In: Alba E., Chicano F., Luque G. (eds) Smart Cities. Smart-CT 2017. Lecture Notes in Computer Science, 2017, vol 10268. Springer, Cham.
A. Camero, J. Toutouh, D.H. Stolfi and E. Alba, "Evolutionary Deep Learning for Car Park Occupancy Prediction in Smart Cities," In: Battiti R., Brunato M., Kotsireas I., Pardalos P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science, 2019, vol 11353. Springer, Cham.
Cédric Stéphane, K.T., El Arbi, A.A., Cherif, W., Silkan, H.: Improving parking availability prediction in Smart Cities with IoT and ensemble-based model. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.01.008
A. Chirichigno, S. Vidal, J.A. Diaz-Pace and C. Marcos, "Predicción de Disponibilidad de Estacionamiento en la Vía Pública," El Congreso Nacional de Ingeniería en Informática / Sistemas de Información (CoNaIISI), Sede Mar del Plata, Argentina, 2018.
Caicedo, F., Blazquez, C., Miranda, P.: Prediction of parking space availability in real time. Expert Sys. Appl. 39, 7281–7290 (2012)
T. Rajabioun, B. Foster, and P.A. Ioannou, "Intelligent parking assist," in 21st Mediterranean Conference on Control and Automation, Chania, 2013, pp. 1156–1161.
Rajabioun, T., Ioannou, P.A.: On-street and off-street parking availability prediction using multivariate spatiotemporal models. IEEE Trans. Intell. Transp. Syst. 16(5), 2913–2924 (2015). https://doi.org/10.1109/TITS.2015.2428705
W. Shao, Y. Zhang, B. Guo, K. Qin, J. Chan and F.D. Salim, "Parking Availability Prediction with Long Short-Term Memory Model," In: Li S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science, 2019, vol 11204, Springer, Cham.
X. Chen, "Parking occupancy prediction and pattern analysis," Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. CS229–2014, 2014.
Sedgwick, Ph.: Pearson’s correlation coefficient. BMJ 345, e4483–e4483 (2012). https://doi.org/10.1136/bmj.e4483
Yeh, C.Y., Huang, C.W., Lee, S.J.: A multiple-kernel support vector regression approach for stock market price forecasting. Expert Syst. Appl. 38(3), 2177–2186 (2011). https://doi.org/10.1016/j.eswa.2010.08.004
Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88
Buhmann, M.D.: Radial basis functions. Acta Numer 9, 1–38 (2000)
H. ERROUSSO, J. EL OUADI, S. BENHADOU, et al., "Improving delivery conditions by dynamically managing the urban parking system: Parking availability prediction," In: 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), IEEE, 2020, pp. 1–6.
W. Mckinney, et al., "Data structures for statistical computing in python," In : Proceedings of the 9th Python in Science Conference, 2010, pp. 51–56.
Hill, T., Marquez, L., O’Connor, M., Remus, W.: Artificial neural network models for forecasting and decision making. Int. J. Forecast. 10(1), 5–15 (1994). https://doi.org/10.1016/0169-2070(94)90045-0
Qeethara, A.-S.: Artificial neural networks in medical diagnosis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)
Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991). https://doi.org/10.1109/59.76685
Hsu, K., Gupta, H.V., Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517–2530 (1995). https://doi.org/10.1029/95WR01955
SC. Wang, "Artificial Neural Network," In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, 2003, vol 743, Springer, Boston, MA. doi: https://doi.org/10.1007/978-1-4615-0377-4_5.
Freidman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–141 (1991)
Chou, S.-M., Lee, T.-S., Shao, Y.E., Chen, I.-F.: Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 27(1), 133–142 (2004). https://doi.org/10.1016/j.eswa.2003.12.013
Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 80(8), 1349–1361 (2007). https://doi.org/10.1016/j.jss.2006.10.049
Lee, T., Chen, I.: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 28(4), 743–752 (2005). https://doi.org/10.1016/j.eswa.2004.12.031
Lee, T.-S., Chiu, C.-C., Chou, Y.-C., Lu, C.-J.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 50(4), 1113–1130 (2006). https://doi.org/10.1016/j.csda.2004.11.006
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach Learn 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Shang, K., Yao, Y., Li, Y., Yang, J., Jia, K., Zhang, X., Chen, X., Bei, X., Guo, X.: Fusion of five satellite-derived products using extremely randomized trees to estimate terrestrial latent heat flux over Europe. Remote sens. 12(4), 687 (2020). https://doi.org/10.3390/rs12040687
Lee, H., Hien, Ph.: Brain tumor segmentation using U-Net based fully convolutional networks and extremely randomized trees. Vietnam J. Sci. Technol. Eng. 60, 19–25 (2019). https://doi.org/10.31276/VJSTE.60(3).19
Galelli, S., Castelletti, A.: Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrol. Earth Syst. Sci. 17, 2669–2684 (2013)
M.I. Ali, F. Gao, A. Mileo, "CityBench: A Configurable Benchmark to Evaluate RSP Engines Using Smart City Datasets," In: Arenas M. et al. (eds) The Semantic Web - ISWC 2015. ISWC 2015. Lecture Notes in Computer Science, 2015, vol 9367, Springer, Cham, doi: https://doi.org/10.1007/978-3-319-25010-6_25.
Parking Data Stream provided by City of Aarhus in Denmark, available at http://iot.ee.surrey.ac.uk:8080/datasets.html#parking and consulted on August 26, 2020.
T. Adetiloye and A. Awasthi, "Predicting short-term congested traffic flow on urban motorway networks," In Handbook of Neural Computation, 2017, pp. 145–165, doi: https://doi.org/10.1016/B978-0-12-811318-9.00008-9.
Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009). https://doi.org/10.1145/1577069.1755883
Pal, R.: Validation methodologies. Predict. Modeling of Drug Sens. (2017). https://doi.org/10.1016/B978-0-12-805274-7.00004-X
Nakagawa, S., Johnson, P.C.D., Schielzeth, H.: The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14(134), 20170213 (2017). https://doi.org/10.1098/rsif.2017.0213
Renaud, O., Victoria-Feser, M.-P.: A robust coefficient of determination for regression. J. Stat. Plan. Inference 140(7), 1852–1862 (2010)
Anagnostopoulos, T., Fedchenkov, P., Tsotsolas, N., Ntalianis, K., Zaslavsky, A., Salmon, I.: Distributed modeling of smart parking system using LSTM with stochastic periodic predictions. Neural Comput. Appl. 32, 10783–10796 (2019). https://doi.org/10.1007/s00521-019-04613-y
G. Visani, E. Bagli, F. Chesani, A. Poluzzi, and D. Capuzzo: "Statistical Stability Indices for LIME: Obtaining Reliable Explanations for Machine Learning Models, " In: arXiv:2001.11757, 2020.
M. Ribeiro, M. Singh and C. Guestrin: Why Should I Trust You?”: Explaining the Predictions of Any Classifier, In: arXiv:1602.04938v3, 2016, 97–101, doi: https://doi.org/10.18653/v1/N16-3020.
A. Shrikumar, P. Greenside and A. Kundaje: Learning Important Features Through Propagating Activation Differences," In: arXiv:1704.02685, 2017.
A. Shrikumar, P. Greenside, A. Shcherbina and A. Kundaje: Not Just a Black Box: Learning Important Features Through Propagating Activation Differences," In: arXiv:1605.01713, 2016.
Mangalathu, S., Hwang, S.-H., Jeon, J.-S.: Failure mode and effects analysis of RC members based on machine-learning-based SHapley additive exPlanations (SHAP) approach. Eng. Struct. 219, 110927 (2020). https://doi.org/10.1016/j.engstruct.2020.110927
I. Giurgiu and A. Schumann: 2019 Additive Explanations for Anomalies Detected from Multivariate Temporal Data," Proceedings of the 28th ACM International Conference on Information and Knowledge Management - CIKM ’19, doi:https://doi.org/10.1145/3357384.3358121.
Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S., Mohammadian, A.: Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 136, 105405 (2020). https://doi.org/10.1016/j.aap.2019.105405
Rodríguez-Pérez, R., Bajorath, J.: Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol Des 34, 1013–1026 (2020). https://doi.org/10.1007/s10822-020-00314-0
Rodríguez-Pérez, R., Bajorath, J.: Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J. Med. Chem. 63(16), 8761–8777 (2019). https://doi.org/10.1021/acs.jmedchem.9b01101
S. Lundberg and S. Lee, "A Unified Approach to Interpreting Model Predictions," In: arXiv:1705.07874, 2017.
S. M. Lundberg, G. G. Erion and S.-I. Lee, "Consistent individualized feature attribution for tree ensembles," In arXiv:1802.03888, 2018.
K. El Mokhtari, B.P. Higdon and A. Başar, "Interpreting financial time series with SHAP values," In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering (CASCON '19), IBM Corp., USA, 2019, pp.166–172.
I. Murugesan, K. Murugesan, L. Balasubramanian and M. Arumugam, "Interpretation of Artificial Intelligence Algorithms in the Prediction of Sepsis," 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. Page 1-Page 4, doi: https://doi.org/10.23919/CinC49843.2019.9005667.
E. De Banville, Les systèmes de transport intelligent: un enjeu stratégique Mondial, 1999.
E. Winter: The shapley value. Handbook of game theory with economic applications, 2002, vol. 3, p. 2025-2054.
Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, ... and G. Varoquaux, "API design for machine learning software: experiences from the scikit-learn project," In arXiv:1309.0238, 2013.
Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)
Kuhn, M., Johnson, K., et al.: Applied predictive modeling. Springer, New York (2013)
S. Arlot, Fondamentaux de l'apprentissage statistique, 2017.
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
On behalf of all authors, the corresponding author states that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Errousso, H., Abdellaoui Alaoui, E.A., Benhadou, S. et al. Exploring how independent variables influence parking occupancy prediction: toward a model results explanation with SHAP values. Prog Artif Intell 11, 367–396 (2022). https://doi.org/10.1007/s13748-022-00291-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-022-00291-5