Skip to main content
Log in

Exploring how independent variables influence parking occupancy prediction: toward a model results explanation with SHAP values

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Finding a parking space is a difficult challenge that drivers face on a daily basis in urban neighborhoods around the world. They often report that desirable spaces near to their destination are either unavailable or very expensive, extending further the search time and congesting even more city centers. Intelligent parking solutions can integrally solve this ongoing problem by better managing existing resources. They allow drivers to access real-time information on parking space availability, collected with different detection techniques (crowdsourcing, parking meters, sensors). Some of these systems also encompass opportunistic services, such as forecasting, needed to adapt to unforeseen dynamic situations. Hence, we presented, in this paper, a methodology for predicting car park occupancy rates using four different machine learning algorithms. Each of these methods is trained with four feature sets to exemplify how information quality impacts prediction accuracy. In addition to achieving high accuracy, it is absolutely crucial to interpret model outputs and analyze each individual feature’s importance. That's why we developed an explanation model based on SHAP values. We implemented our proposal exploiting five months of real-time parking data broadcast by Aarhus City Council. Results show that the best-obtained predictions are by far very accurate with a coefficient of determination (R2) that achieves 0.988 and a mean absolute error that doesn't exceed 2.021%, while requiring a very low computing time that is only 5 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Abbreviations

T :

Time

D :

Day of week

w :

Weather

h :

Holiday

T :

Temperature

l :

Location

D :

Distance

E :

Event

AFE:

Average forecast error

R 2 :

Coefficient of determination

P :

Parking price

Pc:

Parking capacity

Ro:

Rate of vehicles occupying

Rl:

Rate of vehicles leaving

Po:

Previous observations

idA:

Area name

idP:

Parking identifier

POR:

Parking occupancy rate

SDFE:

Standard deviation forecast error

NAP:

Number of available places

SP:

Survival probability

Dt:

Duration time

MAE:

Mean absolute error

MAPE:

Mean absolute percentage error

MSE:

Mean square error

MNE:

Mean normalized error

RMSE:

Root mean square error

RRSE:

Root relative squared error

References

  1. Khatoun, R., Zeadally, S.: Smart cities: concepts, architectures, research opportunities. Commun. ACM 59(8), 46–57 (2016). https://doi.org/10.1145/2858789

    Article  Google Scholar 

  2. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., Meijers, E.: Smart Cities: Ranking of European Medium-Sized Cities. Vienna University of Technology, Centre of Regional Science (SRF) (2007)

    Google Scholar 

  3. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.: Foundations for Smarter Cities. IBM J. Res. Dev. 54(4), 1–16 (2010). https://doi.org/10.1147/JRD.2010.2048257

    Article  Google Scholar 

  4. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014). https://doi.org/10.1109/jiot.2014.2306328

    Article  Google Scholar 

  5. Shoup, D.C.: Cruising for parking. Transp. Policy 13(6), 479–486 (2006). https://doi.org/10.1016/j.tranpol.2006.05.005

    Article  Google Scholar 

  6. Giuffrè, T., Siniscalchi, S.M., Tesoriere, G.: "A novel architecture of parking management for smart cities. proc. Soc. behav Sci 53, 16–28 (2012). https://doi.org/10.1016/j.sbspro.2012.09.856

    Article  Google Scholar 

  7. D. Ayala, O. Wolfson, B. Xu, B. DasGupta and J. Lin: "Pricing of parking for congestion reduction," In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, 2012, pp. 43–51, doi: https://doi.org/10.1145/2424321.2424328.

  8. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vairo, C.: Car parking occupancy detection using smart camera networks and deep learning. 2016 IEEE Symposium on Comput. Commun. (ISCC) Messina (2016). https://doi.org/10.1109/ISCC.2016.7543901

    Article  Google Scholar 

  9. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., Vairo, C.: Deep learning for decentralized parking lot occupancy detection. Expert Sys. Appl. (2017). https://doi.org/10.1016/j.eswa.2016.10.055

    Article  Google Scholar 

  10. S. Yoo, P. Chong, T. Kim, J. Kang, D. Kim, C. Shin, K. Sung and B. Jang, "PGS: Parking Guidance System based on wireless sensor network," 3rd International Symposium on Wireless Pervasive Computing, 2008, pp. 218–222, doi: https://doi.org/10.1109/ISWPC.2008.4556200.

  11. Roman, C., Liao, R., Ball, P., Ou, S., de Heaver, M.: Detecting on-street parking spaces in smart cities: performance evaluation of fixed and mobile sensing systems. IEEE Trans. Intell. Transp. Syst. 19(7), 2234–2245 (2018). https://doi.org/10.1109/TITS.2018.2804169

    Article  Google Scholar 

  12. Yan, G., Yang, W., Rawat, D.B., Olariu, S.: SmartParking: a secure and intelligent parking system. IEEE Intell. Transp. Sys. Mag. Spring 3(1), 18–30 (2011). https://doi.org/10.1109/MITS.2011.940473

    Article  Google Scholar 

  13. S. Ahmed, Soaibuzzaman, M. S. Rahman and M. S. Rahaman, "A Blockchain-Based Architecture for Integrated Smart Parking Systems," 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 2019, pp. 177–182, doi: https://doi.org/10.1109/PERCOMW.2019.8730772.

  14. Caicedo, F.: The use of space availability information in ‘“PARC”’ systems to reduce search times in parking facilities. Transp. Res. C Emerg. Technol. 17, 60–68 (2009). https://doi.org/10.1016/J.TRC.2008.07.001

    Article  MathSciNet  Google Scholar 

  15. Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: "Crowdsourcing with Smartphones. In IEEE Internet Comput. 16(5), 36–44 (2012). https://doi.org/10.1109/MIC.2012.70

    Article  Google Scholar 

  16. J. Kopecký and J. Domingue, "ParkJamJAM: Crowdsourcing parking availability information with linked data (DEMO)," Proc. Extended Semantic Web Conf., 2012, pp. 381–386.

  17. A. Nandugudi, T. Ki, C. Nuessle and G. Challen: "PocketParker: Pocketsourcing parking lot availability," UbiComp 2014 - Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014, pp. 963–973, doi: https://doi.org/10.1145/2632048.2632098.

  18. B. Kifle, J. Villalobos, D. Riley and J. Quevedo-Torrero: "Crowdsourcing automobile parking availability sensing using mobile phones", Proc. Midwest Instruct. Comput. Symp, 2015, pp. 1–7.

  19. R. Liao, C. Roman, P. Ball, S. Ou and L. Chen: "Crowdsourcing On-street Parking Space Detection," ArXiv, 2016, abs/1603.00441.

  20. W. Viriyasitavat, P. Sangaroonsilp, J. Sumritkij and N. Tarananopas: 2015 Mobile crowdsourcing platform for intelligent car park systems, 2015 International Computer Science and Engineering Conference (ICSEC) Chiang Mai, , doi: https://doi.org/10.1109/ICSEC.2015.7401398.

  21. T. Yan, B. Hoh, D. Ganesan, K. Tracton, T. Iwuchukwu, J.-S. Lee, CrowdPark: A Crowdsourcing-based Parking Reservation System for Mobile Phones. University of Massachusetts at Amherst Tech, 2011, Technical Report.

  22. Atif, Y., Kharrazi, S., Jianguo, D., Andler, S.F.: Internet of things data analytics for parking availability prediction and guidance. Trans. Emerging Tel. Tech. 31, e3862 (2020). https://doi.org/10.1002/ett.3862

    Article  Google Scholar 

  23. Xiao, J., Lou, Y., Frisby, J.: How likely am I to find parking? – A practical model-based framework for predicting parking availability. Transp. Res. Part B: Methodol. 112, 19–39 (2018). https://doi.org/10.1016/j.trb.2018.04.001

    Article  Google Scholar 

  24. Surafel, T., Di Marzo Serugendo, G.: Cooperative multi-agent system for parking availability prediction based on time varying dynamic markov chains. J. adv. Transp. 2017, 1760842 (2017). https://doi.org/10.1155/2017/1760842

    Article  Google Scholar 

  25. Beheshti, R., Sukthankar, G.: A hybrid modeling approach for parking and traffic prediction in urban simulations. AI & Soc. 30, 333–344 (2015). https://doi.org/10.1007/s00146-013-0530-7

    Article  Google Scholar 

  26. Ji, Y., Tang, D., Blythe, P., Guo, W., Wang, W.: Short-term forecasting of available parking space using wavelet neural network model. IET Intel. Transport Syst. 9(2), 202–209 (2015). https://doi.org/10.1049/iet-its.2013.0184

    Article  Google Scholar 

  27. Hsueh-Chan, L., Chen-Hao, L.: Prediction-based parking allocation framework in urban environments. Int. J. Geogr. Inf. Sci. (2020). https://doi.org/10.1080/13658816.2020.1721503

    Article  Google Scholar 

  28. Sergio, D.M., Origlia, A.: Exploiting recurring patterns to improve scalability of parking availability prediction systems. Electronics 9, 838 (2020)

    Article  Google Scholar 

  29. Zhang, W., Liu, H., Liu, Y., Zhou, J., Xiong, H.: Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction. Proc. AAAI Conf. Artif. Intell. 34, 1186–1193 (2020). https://doi.org/10.1609/aaai.v34i01.5471

    Article  Google Scholar 

  30. F. Richter, S. Di Martino and D. C. Mattfeld: "Temporal and Spatial Clustering for a Parking Prediction Service," 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, 2014, pp. 278–282, doi: https://doi.org/10.1109/ICTAI.2014.49.

  31. F. Bock, S. Di Martino, and A. Origlia: "A 2-Step Approach to Improve Data-driven Parking Availability Predictions," In Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science (IWCTS’17), Association for Computing Machinery, New York, NY, USA, 2017, pp. 13–18, doi: https://doi.org/10.1145/3151547.3151550.

  32. Fabusuyi, T., Hampshire, R., Hill, V., Sasanuma, K.: Decision analytics for parking availability in downtown Pittsburgh. INFORMS J. Appl. Anal. 44(3), 286–299 (2014). https://doi.org/10.1287/inte.2014.0743

    Article  Google Scholar 

  33. A. Ionita, A. Pomp, M. Cochez, T. Meisen and S. Decker: "Where to Park? Predicting Free Parking Spots in Unmonitored City Areas," 8th International Conference on Web Intelligence, Mining and Semantics, Novi Sad, Serbia, 2018, pp. 1–12. 10, doi: 1145/3227609.3227648.

  34. Y. Rong, Z. Xu, R. Yan and X. Ma, "Du-Parking: Spatio-Temporal Big Data Tells You Realtime Parking Availability," In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 646–654.

  35. Y. Zheng, S. Rajasegarar and C. Leckie: "Parking availability prediction for sensor-enabled car parks in smart cities," 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 2015, pp. 1–6, doi: https://doi.org/10.1109/ISSNIP.2015.7106902.

  36. Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., Karlaftis, M.G.: A Real-Time parking prediction system for smart cities. J. Intell. Transp. Sys. 20(2), 192–204 (2016). https://doi.org/10.1080/15472450.2015.1037955

    Article  Google Scholar 

  37. J. Li, J. Li and H. Zhang, "Deep Learning Based Parking Prediction on Cloud Platform," 4th International Conference on Big Data Computing and Communications (BIGCOM), Chicago, IL, 2018, pp. 132–137, doi: https://doi.org/10.1109/BIGCOM.2018.00028.

  38. Errousso, H., Malhene, N., Benhadou, S., Medromi, H.: Predicting car park availability for a better delivery bay management. Proc. Comput. Sci. 170, 203–210 (2020). https://doi.org/10.1016/j.procs.2020.03.026

    Article  Google Scholar 

  39. D.H. Stolfi, E. Alba and X. Yao, "Predicting Car Park Occupancy Rates in Smart Cities," In: Alba E., Chicano F., Luque G. (eds) Smart Cities. Smart-CT 2017. Lecture Notes in Computer Science, 2017, vol 10268. Springer, Cham.

  40. A. Camero, J. Toutouh, D.H. Stolfi and E. Alba, "Evolutionary Deep Learning for Car Park Occupancy Prediction in Smart Cities," In: Battiti R., Brunato M., Kotsireas I., Pardalos P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science, 2019, vol 11353. Springer, Cham.

  41. Cédric Stéphane, K.T., El Arbi, A.A., Cherif, W., Silkan, H.: Improving parking availability prediction in Smart Cities with IoT and ensemble-based model. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.01.008

    Article  Google Scholar 

  42. A. Chirichigno, S. Vidal, J.A. Diaz-Pace and C. Marcos, "Predicción de Disponibilidad de Estacionamiento en la Vía Pública," El Congreso Nacional de Ingeniería en Informática / Sistemas de Información (CoNaIISI), Sede Mar del Plata, Argentina, 2018.

  43. Caicedo, F., Blazquez, C., Miranda, P.: Prediction of parking space availability in real time. Expert Sys. Appl. 39, 7281–7290 (2012)

    Article  Google Scholar 

  44. T. Rajabioun, B. Foster, and P.A. Ioannou, "Intelligent parking assist," in 21st Mediterranean Conference on Control and Automation, Chania, 2013, pp. 1156–1161.

  45. Rajabioun, T., Ioannou, P.A.: On-street and off-street parking availability prediction using multivariate spatiotemporal models. IEEE Trans. Intell. Transp. Syst. 16(5), 2913–2924 (2015). https://doi.org/10.1109/TITS.2015.2428705

    Article  Google Scholar 

  46. W. Shao, Y. Zhang, B. Guo, K. Qin, J. Chan and F.D. Salim, "Parking Availability Prediction with Long Short-Term Memory Model," In: Li S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science, 2019, vol 11204, Springer, Cham.

  47. X. Chen, "Parking occupancy prediction and pattern analysis," Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep. CS229–2014, 2014.

  48. Sedgwick, Ph.: Pearson’s correlation coefficient. BMJ 345, e4483–e4483 (2012). https://doi.org/10.1136/bmj.e4483

    Article  Google Scholar 

  49. Yeh, C.Y., Huang, C.W., Lee, S.J.: A multiple-kernel support vector regression approach for stock market price forecasting. Expert Syst. Appl. 38(3), 2177–2186 (2011). https://doi.org/10.1016/j.eswa.2010.08.004

    Article  Google Scholar 

  50. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  51. Buhmann, M.D.: Radial basis functions. Acta Numer 9, 1–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. H. ERROUSSO, J. EL OUADI, S. BENHADOU, et al., "Improving delivery conditions by dynamically managing the urban parking system: Parking availability prediction," In: 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), IEEE, 2020, pp. 1–6.

  53. W. Mckinney, et al., "Data structures for statistical computing in python," In : Proceedings of the 9th Python in Science Conference, 2010, pp. 51–56.

  54. Hill, T., Marquez, L., O’Connor, M., Remus, W.: Artificial neural network models for forecasting and decision making. Int. J. Forecast. 10(1), 5–15 (1994). https://doi.org/10.1016/0169-2070(94)90045-0

    Article  Google Scholar 

  55. Qeethara, A.-S.: Artificial neural networks in medical diagnosis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)

    Google Scholar 

  56. Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991). https://doi.org/10.1109/59.76685

    Article  Google Scholar 

  57. Hsu, K., Gupta, H.V., Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517–2530 (1995). https://doi.org/10.1029/95WR01955

    Article  Google Scholar 

  58. SC. Wang, "Artificial Neural Network," In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, 2003, vol 743, Springer, Boston, MA. doi: https://doi.org/10.1007/978-1-4615-0377-4_5.

  59. Freidman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–141 (1991)

    MathSciNet  Google Scholar 

  60. Chou, S.-M., Lee, T.-S., Shao, Y.E., Chen, I.-F.: Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 27(1), 133–142 (2004). https://doi.org/10.1016/j.eswa.2003.12.013

    Article  Google Scholar 

  61. Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 80(8), 1349–1361 (2007). https://doi.org/10.1016/j.jss.2006.10.049

    Article  Google Scholar 

  62. Lee, T., Chen, I.: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 28(4), 743–752 (2005). https://doi.org/10.1016/j.eswa.2004.12.031

    Article  Google Scholar 

  63. Lee, T.-S., Chiu, C.-C., Chou, Y.-C., Lu, C.-J.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 50(4), 1113–1130 (2006). https://doi.org/10.1016/j.csda.2004.11.006

    Article  MathSciNet  MATH  Google Scholar 

  64. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach Learn 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  65. Shang, K., Yao, Y., Li, Y., Yang, J., Jia, K., Zhang, X., Chen, X., Bei, X., Guo, X.: Fusion of five satellite-derived products using extremely randomized trees to estimate terrestrial latent heat flux over Europe. Remote sens. 12(4), 687 (2020). https://doi.org/10.3390/rs12040687

    Article  Google Scholar 

  66. Lee, H., Hien, Ph.: Brain tumor segmentation using U-Net based fully convolutional networks and extremely randomized trees. Vietnam J. Sci. Technol. Eng. 60, 19–25 (2019). https://doi.org/10.31276/VJSTE.60(3).19

    Article  Google Scholar 

  67. Galelli, S., Castelletti, A.: Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrol. Earth Syst. Sci. 17, 2669–2684 (2013)

    Article  Google Scholar 

  68. M.I. Ali, F. Gao, A. Mileo, "CityBench: A Configurable Benchmark to Evaluate RSP Engines Using Smart City Datasets," In: Arenas M. et al. (eds) The Semantic Web - ISWC 2015. ISWC 2015. Lecture Notes in Computer Science, 2015, vol 9367, Springer, Cham, doi: https://doi.org/10.1007/978-3-319-25010-6_25.

  69. Parking Data Stream provided by City of Aarhus in Denmark, available at http://iot.ee.surrey.ac.uk:8080/datasets.html#parking and consulted on August 26, 2020.

  70. T. Adetiloye and A. Awasthi, "Predicting short-term congested traffic flow on urban motorway networks," In Handbook of Neural Computation, 2017, pp. 145–165, doi: https://doi.org/10.1016/B978-0-12-811318-9.00008-9.

  71. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009). https://doi.org/10.1145/1577069.1755883

    Article  MathSciNet  MATH  Google Scholar 

  72. Pal, R.: Validation methodologies. Predict. Modeling of Drug Sens. (2017). https://doi.org/10.1016/B978-0-12-805274-7.00004-X

    Article  Google Scholar 

  73. Nakagawa, S., Johnson, P.C.D., Schielzeth, H.: The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14(134), 20170213 (2017). https://doi.org/10.1098/rsif.2017.0213

    Article  Google Scholar 

  74. Renaud, O., Victoria-Feser, M.-P.: A robust coefficient of determination for regression. J. Stat. Plan. Inference 140(7), 1852–1862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  75. Anagnostopoulos, T., Fedchenkov, P., Tsotsolas, N., Ntalianis, K., Zaslavsky, A., Salmon, I.: Distributed modeling of smart parking system using LSTM with stochastic periodic predictions. Neural Comput. Appl. 32, 10783–10796 (2019). https://doi.org/10.1007/s00521-019-04613-y

    Article  Google Scholar 

  76. G. Visani, E. Bagli, F. Chesani, A. Poluzzi, and D. Capuzzo: "Statistical Stability Indices for LIME: Obtaining Reliable Explanations for Machine Learning Models, " In: arXiv:2001.11757, 2020.

  77. M. Ribeiro, M. Singh and C. Guestrin: Why Should I Trust You?”: Explaining the Predictions of Any Classifier, In: arXiv:1602.04938v3, 2016, 97–101, doi: https://doi.org/10.18653/v1/N16-3020.

  78. A. Shrikumar, P. Greenside and A. Kundaje: Learning Important Features Through Propagating Activation Differences," In: arXiv:1704.02685, 2017.

  79. A. Shrikumar, P. Greenside, A. Shcherbina and A. Kundaje: Not Just a Black Box: Learning Important Features Through Propagating Activation Differences," In: arXiv:1605.01713, 2016.

  80. Mangalathu, S., Hwang, S.-H., Jeon, J.-S.: Failure mode and effects analysis of RC members based on machine-learning-based SHapley additive exPlanations (SHAP) approach. Eng. Struct. 219, 110927 (2020). https://doi.org/10.1016/j.engstruct.2020.110927

    Article  Google Scholar 

  81. I. Giurgiu and A. Schumann: 2019 Additive Explanations for Anomalies Detected from Multivariate Temporal Data," Proceedings of the 28th ACM International Conference on Information and Knowledge Management - CIKM ’19, doi:https://doi.org/10.1145/3357384.3358121.

  82. Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S., Mohammadian, A.: Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 136, 105405 (2020). https://doi.org/10.1016/j.aap.2019.105405

    Article  Google Scholar 

  83. Rodríguez-Pérez, R., Bajorath, J.: Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J Comput Aided Mol Des 34, 1013–1026 (2020). https://doi.org/10.1007/s10822-020-00314-0

    Article  Google Scholar 

  84. Rodríguez-Pérez, R., Bajorath, J.: Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J. Med. Chem. 63(16), 8761–8777 (2019). https://doi.org/10.1021/acs.jmedchem.9b01101

    Article  Google Scholar 

  85. S. Lundberg and S. Lee, "A Unified Approach to Interpreting Model Predictions," In: arXiv:1705.07874, 2017.

  86. S. M. Lundberg, G. G. Erion and S.-I. Lee, "Consistent individualized feature attribution for tree ensembles," In arXiv:1802.03888, 2018.

  87. K. El Mokhtari, B.P. Higdon and A. Başar, "Interpreting financial time series with SHAP values," In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering (CASCON '19), IBM Corp., USA, 2019, pp.166–172.

  88. I. Murugesan, K. Murugesan, L. Balasubramanian and M. Arumugam, "Interpretation of Artificial Intelligence Algorithms in the Prediction of Sepsis," 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. Page 1-Page 4, doi: https://doi.org/10.23919/CinC49843.2019.9005667.

  89. E. De Banville, Les systèmes de transport intelligent: un enjeu stratégique Mondial, 1999.

  90. E. Winter: The shapley value. Handbook of game theory with economic applications, 2002, vol. 3, p. 2025-2054.

  91. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  92. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, ... and G. Varoquaux, "API design for machine learning software: experiences from the scikit-learn project," In arXiv:1309.0238, 2013.

  93. Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272 (2020)

    Article  Google Scholar 

  94. Kuhn, M., Johnson, K., et al.: Applied predictive modeling. Springer, New York (2013)

    Book  MATH  Google Scholar 

  95. S. Arlot, Fondamentaux de l'apprentissage statistique, 2017.

  96. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  97. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Arbi Abdellaoui Alaoui.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errousso, H., Abdellaoui Alaoui, E.A., Benhadou, S. et al. Exploring how independent variables influence parking occupancy prediction: toward a model results explanation with SHAP values. Prog Artif Intell 11, 367–396 (2022). https://doi.org/10.1007/s13748-022-00291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-022-00291-5

Keywords

Navigation