Skip to main content

Advertisement

Advanced deep learning and large language models for suicide ideation detection on social media

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Recently, suicide ideations represent a worldwide health concern and pose many anticipation challenges. Actually, the prevalence of expressing self-destructive thoughts especially on forums and social media requires effective monitoring for suicide prevention, and early intervention. Meanwhile, deep learning techniques and Large Language Models (LLMs) have emerged as promising tools in diverse Natural Language Processing (NLP) tasks, including sentiment analysis and text classification. In this paper, we propose a deep learning model incorporating triple models of word embeddings, as well as various fine-tuned LLMs, to identify suicidal thoughts in Reddit posts. In effect, we implemented a Bidirectional Long Short-Term Memory (BiLSTM), and a Convolutional Neural Network (CNN) model to categorize posts associated with non-suicidal and suicidal thoughts. Besides, through the combination of Word2Vec, FastText and GloVe embeddings, our models learn intricate patterns and prevalent nuances in suicide-related language. Furthermore, we employed a merged version of CNN and BiLSTM models, entitled C-BiLSTM, and several LLMs, including pre-trained Bidirectional Encoder Representations from Transformers (BERT) models and a Generative Pre-training Transformer (GPT) model. The analysis of all our proposed models shows that our C-BiLSTM model with triple word embedding and our GPT model got the best performance compared to deep learning and LLMs baseline models, reaching accuracies of 94.5% and 97.69%, respectively. In fact, our best model’s capacity to extract meaningful interdependencies among words significantly promotes its classification performance. This analysis contributes to a deeper understanding of the psychological factors and linguistic markers indicative of suicidal thoughts, thereby informing future research and intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Naguy, A., Elbadry, H., Salem, H.: Suicide: a précis! J. Fam. Med. Prim. Care 9, 4009–4015 (2020). https://doi.org/10.4103/jfmpc.jfmpc_12_20

    Article  Google Scholar 

  2. Klonsky, E.D., May, A.M., Saffer, B.Y.: Suicide, suicide attempts, and suicidal ideation. Annu. Rev. Clin. Psychol. 12, 307–330 (2016). https://doi.org/10.1146/annurev-clinpsy-021815-093204

    Article  Google Scholar 

  3. Jobes, D.A., Joiner, T.E.: Reflections on suicidal ideation. Crisis 40, 227–230 (2019). https://doi.org/10.1027/0227-5910/a000615

    Article  Google Scholar 

  4. Norris, D.R., Clark, M.S.: The suicidal patient: evaluation and management. Am. Fam. Phys. 103, 417–421 (2021). (PMID: 33788523)

    Google Scholar 

  5. Rodriguez, C.I., Zorumski, C.F.: Rapid and novel treatments in psychiatry: the future is now. Neuropsychopharmacology 48, 1–2 (2023). https://doi.org/10.1038/s41386-023-01720-2

    Article  Google Scholar 

  6. Kennard, B.D., Hughes, J.L., Minhajuddin, A., et al.: Suicidal thoughts and behaviors in youth seeking mental health treatment in Texas: youth depression and suicide network research registry. Suicide Life-Threatening Behav. 53, 748–763 (2023). https://doi.org/10.1111/sltb.12980

    Article  Google Scholar 

  7. Hophing, M., Zimmerman-Winslow, K.J., Basu, A., Jacob, T.: The impact of COVID-19 and quarantine on suicidality in geriatric inpatients—a case Report. J. Geriatr. Psychiatr. Neurol. 35, 550–554 (2022). https://doi.org/10.1177/08919887211023588

    Article  Google Scholar 

  8. Hinduja, S., Patchin, J.W.: Bullying, cyberbullying, and suicide. Arch. Suicide Res. 14, 206–221 (2010). https://doi.org/10.1080/13811118.2010.494133

    Article  Google Scholar 

  9. Hong, J.S., Kral, M.J., Sterzing, P.R.: Pathways from bullying perpetration, victimization, and bully victimization to suicidality among school-aged youth: a review of the potential mediators and a call for further investigation. Trauma Violence Abus. 16, 379–390 (2015). https://doi.org/10.1177/1524838014537904

    Article  Google Scholar 

  10. Vergara, G.A., Stewart, J.G., Cosby, E.A., et al.: Non-Suicidal self-injury and suicide in depressed adolescents: impact of peer victimization and bullying. J. Affect. Disord. 245, 744–749 (2019). https://doi.org/10.1016/j.jad.2018.11.084

    Article  Google Scholar 

  11. Nobles, A.L., Glenn, J.J., Kowsari, K., et al.: Identification of Imminent suicide risk among young adults using text messages. In: CHI ’18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, pp 1–11. https://doi.org/10.1145/3173574.3173987(2018)

  12. Gaur, M., Kursuncu, U., Sheth, A., et al.: Knowledge-aware assessment of severity of suicide risk for early intervention. In: The Web Conference 2019-Proceedings of the World Wide Web Conference, WWW 2019. Association for Computing Machinery, New York, NY, USA, pp 514–525. https://doi.org/10.1145/3308558.3313698(2019)

  13. Tseng, F.Y., Yang, H.J.: Internet use and web communication networks, sources of social support, and forms of suicidal and nonsuicidal self-injury among adolescents: different patterns between genders. Suicide Life-Threatening Behav. 45, 178–191 (2015). https://doi.org/10.1111/sltb.12124

    Article  Google Scholar 

  14. Lopez-Castroman, J., Moulahi, B., Azé, J., et al.: Mining social networks to improve suicide prevention: a scoping review. J. Neurosci. Res. 98, 616–625 (2020). https://doi.org/10.1002/jnr.24404

    Article  Google Scholar 

  15. Wang, Z., Yu, G., Tian, X.: Exploring behavior of people with suicidal ideation in a Chinese online suicidal community. Int. J. Environ. Res. Public Health 16, 54–67 (2019). https://doi.org/10.3390/ijerph16010054

    Article  Google Scholar 

  16. Yue, L., Chen, W., Li, X., et al.: A survey of sentiment analysis in social media. Knowl. Inf. Syst. 60, 617–663 (2019). https://doi.org/10.1007/s10115-018-1236-4

    Article  Google Scholar 

  17. Diniz, E.J.S., Fontenele, J.E., de Oliveira, A.C., et al.: Boamente: a natural language processing-based digital phenotyping tool for smart monitoring of suicidal ideation. Healthcare 10, 698–717 (2022). https://doi.org/10.3390/healthcare10040698

    Article  Google Scholar 

  18. Liu, J., Shi, M., Jiang, H.: Detecting suicidal ideation in social media: an ensemble method based on feature fusion. Int. J. Environ. Res. Public Health 19, 8197–8210 (2022). https://doi.org/10.3390/ijerph19138197

    Article  Google Scholar 

  19. Chadha, A., Gupta, A., Kumar, Y.: Suicidal ideation detection on social media: a machine learning approach. In: Proceedings of International Conference on Technological Advancements in Computational Sciences, ICTACS 2022. IEEE, Tashkent, Uzbekistan, pp 685–688. (2022) https://doi.org/10.1109/ICTACS56270.2022.9988722

  20. Chadha, A., Kaushik, B.: A survey on prediction of suicidal ideation using machine and ensemble learning. Comput. J. 64, 1617–1632 (2021). https://doi.org/10.1093/comjnl/bxz120

    Article  Google Scholar 

  21. Van, L.D., Montgomery, J., Kirkby, K.C., Scanlan, J.: Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting. J. Biomed. Inform. 86, 49–58 (2018). https://doi.org/10.1016/j.jbi.2018.08.007

    Article  Google Scholar 

  22. Bittar, A., Velupillai, S., Roberts, A., Dutta, R.: Text classification to inform suicide risk assessment in electronic health records. Stud. Health Technol. Inform. 264, 40–44 (2019). https://doi.org/10.3233/SHTI190179

    Article  Google Scholar 

  23. Carson, N.J., Mullin, B., Sanchez, M.J., et al.: Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PLoS ONE 14, e0211116 (2019). https://doi.org/10.1371/journal.pone.0211116

    Article  Google Scholar 

  24. Chiroma, F., Liu, H., Cocea, M.: Text classification for suicide related tweets. In: Proceedings-International Conference on Machine Learning and Cybernetics. IEEE, Chengdu, China, pp 587–592. (2018) https://doi.org/10.1109/ICMLC.2018.8527039

  25. Sawhney, R., Manchanda, P., Singh, R., Aggarwal, S.: A computational approach to feature extraction for identification of suicidal ideation in tweets. In: ACL 2018-56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Student Research Workshop. Association for Computational Linguistics, Melbourne, Australia, pp 91–98. (2018) https://doi.org/10.18653/v1/p18-3013

  26. Shah, F.M., Haque, F., Un Nur, R., et al.: A hybridized feature extraction approach to suicidal ideation detection from social media post. In: 2020 IEEE Region 10 Symposium, TENSYMP 2020. IEEE, Dhaka, Bangladesh, pp 985–988. (2020) https://doi.org/10.1109/TENSYMP50017.2020.9230733

  27. Chatterjee, M., Samanta, P., Kumar, P., Sarkar, D.: Suicide Ideation detection using multiple feature analysis from twitter data. In: 2022 IEEE Delhi Section Conference, DELCON 2022. IEEE, New Delhi, India, pp 1–6. (2022) https://doi.org/10.1109/DELCON54057.2022.9753295

  28. Sawhney R, Manchanda P, Mathur P, et al.: Exploring and Learning suicidal ideation connotations on social media with deep learning. In: Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Association for Computational Linguistics, Brussels, Belgium, pp 167–175. (2019) https://doi.org/10.18653/v1/w18-6223

  29. Sinha, P.P., Mahata, D., Mishra, R., et al.: #suicidal-A multipronged approach to identify and explore suicidal ideation in twitter. In: International Conference on Information and Knowledge Management, Proceedings. Association for Computing Machinery New York, NY, United States, pp 941–950. (2019) https://doi.org/10.1145/3357384.3358060

  30. Cao, L., Zhang, H., Feng, L., et al.: Latent suicide risk detection on microblog via suicide-oriented word embeddings and layered attention. In: Inui K, Jiang J, Ng V, Wan X (eds) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, pp 1718–1728. (2019) https://doi.org/10.18653/v1/D19-1181

  31. Tadesse, M.M., Lin, H., Xu, B., Yang, L.: Detection of suicide ideation in social media forums using deep learning. Algorithms 13, 7–26 (2020). https://doi.org/10.3390/a13010007

    Article  Google Scholar 

  32. Ji, S., Li, X., Huang, Z., Cambria, E.: Suicidal ideation and mental disorder detection with attentive relation networks. Neural Comput. Appl. 34, 10309–10319 (2022). https://doi.org/10.1007/s00521-021-06208-y

    Article  Google Scholar 

  33. Aldhyani, T.H.H., Alsubari, S.N., Alshebami, A.S., et al.: Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. Int. J. Environ. Res. Public Health 19, 12635–12651 (2022). https://doi.org/10.3390/ijerph191912635

    Article  Google Scholar 

  34. Haque, R., Islam, N., Islam, M., Ahsan, M.M.: A comparative analysis on suicidal ideation detection using NLP, machine, and deep learning. Technologies 10, 57–72 (2022). https://doi.org/10.3390/technologies10030057

    Article  Google Scholar 

  35. Haque, F., Nur, R.U., Jahan, S. Al, et al.: A transformer based approach to detect suicidal ideation using pre-trained language models. In: ICCIT 2020—23rd International Conference on Computer and Information Technology, Proceedings. IEEE, DHAKA, Bangladesh, pp 1–5. (2020) https://doi.org/10.1109/ICCIT51783.2020.9392692

  36. Tanaka, R., Fukazawa, Y.: Integrating supervised extractive and generative language models for suicide risk evidence summarization. In: CLPsych 2024 - 9th Workshop on Computational Linguistics and Clinical Psychology, Proceedings of the Workshop. Association for Computational Linguistics, St. Julians, Malta, pp 270–277. (2024) https://doi.org/10.48550/arXiv.2403.15478

  37. Li, Z., Ameer, I., Hu, Y., et al.: Suicide tendency prediction from psychiatric notes using transformer models. In: Proceedings - 2023 IEEE 11th International Conference on Healthcare Informatics, ICHI 2023. IEEE Computer Society, Los Alamitos, CA, USA, pp 481–483. (2023) https://doi.org/10.1109/ICHI57859.2023.00074

  38. Yang, K., Ji, S., Zhang, T., et al.: Towards interpretable mental health analysis with large language models. In: EMNLP 2023—2023 Conference on Empirical Methods in Natural Language Processing, Proceedings. The Association for Computational Linguistics, Singapore, pp 6056–6077. (2023) https://doi.org/10.18653/v1/2023.emnlp-main.370

  39. Ananthakrishnan, G., Jayaraman, A.K., Trueman, T.E., et al.: Suicidal intention detection in tweets using BERT-based transformers. In: 3rd IEEE 2022 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2022. IEEE, Greater Noida, India, pp 322–327. (2022) https://doi.org/10.1109/ICCCIS56430.2022.10037677

  40. Suicide Detection Dataset. https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch. Accessed 28 Sep 2023

  41. Hickman, L., Thapa, S., Tay, L., et al.: Text preprocessing for text mining in organizational research: review and recommendations. Organ. Res. Methods 25, 114–146 (2022). https://doi.org/10.1177/1094428120971683

    Article  Google Scholar 

  42. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings. ICLR 2013 - Workshop Track Proceedings. https://doi.org/10.48550/arXiv.1301.3781. (2013) Accessed 28 Sep 2023

  43. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word representation. In: EMNLP 2014—2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference. Association for Computational Linguistics, Doha, Qatar, pp 1532–1543. (2014) https://doi.org/10.3115/v1/d14-1162

  44. Mikolov, T., Grave, E., Bojanowski, P., et al.: Advances in pre-training distributed word representations. In: LREC 2018—11th International Conference on Language Resources and Evaluation. pp 52–55. (2019) https://doi.org/10.48550/arXiv.1712.09405. Accessed 28 Sep 2023

  45. Alsentzer, E., Murphy, J., Boag, W. et al.: Publicly Available Clinical {BERT} Embeddings. In: Rumshisky A, Roberts K, Bethard S, Naumann T (eds) Proceedings of the 2nd Clinical Natural Language Processing Workshop. Association for Computational Linguistics, Minneapolis, Minnesota, USA, pp 72–78. (2019) https://doi.org/10.18653/v1/W19-1909

  46. Ji, S., Zhang, T., Ansari, L. et al.: MentalBERT: Publicly available pretrained language models for mental healthcare. In: 2022 Language Resources and Evaluation Conference, LREC 2022. European Language Resources Association, Marseille, France, pp 7184–7190. (2022) https://doi.org/10.48550/arXiv.2110.15621

  47. Radford, A., Wu, J., Child, R., et al.: Language models are unsupervised multitask learners. https://api.semanticscholar.org/CorpusID:160025533. (2019) Accessed 29 Apr 2024

  48. Aladag, A.E., Muderrisoglu, S., Akbas, N.B., et al.: Detecting suicidal ideation on forums: proof-of-concept study. J. Med. Internet Res. 20, e215 (2018). https://doi.org/10.2196/jmir.9840

    Article  Google Scholar 

  49. Chadha, A., Kaushik, B.: A hybrid deep learning model using grid search and cross-validation for effective classification and prediction of suicidal ideation from social network data. New Gener. Comput. 40, 889–914 (2022). https://doi.org/10.1007/s00354-022-00191-1

    Article  Google Scholar 

  50. Hugging Face. https://huggingface.co/. Accessed 29 Apr 2024

  51. Nabeel, M., Rehman, A., Shoaib, U.: Accuracy Based feature ranking metric for multi-label text classification. Int. J. Adv. Comput. Sci. Appl. 8, 369–379 (2017). https://doi.org/10.14569/ijacsa.2017.081048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Qorich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qorich, M., El Ouazzani, R. Advanced deep learning and large language models for suicide ideation detection on social media. Prog Artif Intell 13, 135–147 (2024). https://doi.org/10.1007/s13748-024-00326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-024-00326-z

Keywords