Skip to main content
Log in

Artery/vein classification of retinal vessels using classifiers fusion

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

The morphological changes in retinal blood vessels indicate cardiovascular diseases and consequently those diseases lead to ocular complications such as Hypertensive Retinopathy. One of the significant clinical findings related to this ocular abnormality is alteration of width of vessel. The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents an important approach to solve this problem by means of feature ranking strategies and multiple classifiers decision-combination scheme that is specifically adapted for artery/vein classification. For this, three databases are used with a local dataset of 44 images and two publically available databases, INSPIRE-AVR containing 40 images and VICAVR containing 58 images. The local database also contains images with pathologically diseased structures. The performance of the proposed system is assessed by comparing the experimental results with the gold standard estimations as well as with the results of previous methodologies, achieving promising classification performance, with an over all accuracy of 90.45%, 93.90% and 87.82%, in retinal blood vessel separation for Local, INSPIRE-AVR and VICAVR dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aibinu AM, Iqbal MI, Shafie AA, Salami MJE, Nilsson M. Vascular intersection detection in retina fundus images using a new hybrid approach. Comput Biol Med. 2010;40(1):81–9.

    Article  Google Scholar 

  2. Azzopardi G, Petkov N. Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recogn Lett. 2013;34(8):922–33.

    Article  Google Scholar 

  3. Beheshti I, Demirel H, Farokhian F, Yang C, Matsuda H, Initiative Alzheimer’s Disease Neuroimaging. Structural MRI-based detection of Alzheimer’s disease using feature ranking and classification error. Comput Methods Programs Biomed. 2016;137:177–93.

    Article  Google Scholar 

  4. Bhuiyan A, Hussain MdA, Wong Y, Klein TR. Retinal artery and vein classification for automatic vessel caliber grading. In: Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society. 2018. pp. 870–873. https://doi.org/10.1109/embc.2018.8512287.

  5. Dashtbozorg B, Mendonça AM, Campilho A. An automatic method for the estimation of arteriolar-to-venular ratio in retinal images. In: 26th international symposium on computer-based medical systems (CBMS). 2013. pp. 512–513. IEEE.

  6. Devi SS, Roy A, Singha J, Sheikh SA, Laskar RH. Malaria infected erythrocyte classification based on a hybrid classifier using microscopic images of thin blood smear. Multimed Tools Appl. 2016;77:631.

    Article  Google Scholar 

  7. Dimitrovski I, Kocev D, Kitanovski I, Loskovska S, Džeroski S. Improved medical image modality classification using a combination of visual and textual features. Comput Med Imaging Graph. 2015;39:14–26.

    Article  Google Scholar 

  8. Douze M, Ramisa A, Schmid C. Combining attributes and fisher vectors for efficient image retrieval. In: Computer vision and pattern recognition CVPR. 2011. pp. 745–752. IEEE.

  9. Du P, Zhang W, Sun H. Multiple classifier combination for hyperspectral remote sensing image classification. Multiple classifier systems. Berlin: Springer; 2009. p. 52–61.

    Chapter  Google Scholar 

  10. Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Trans Med Imaging. 2015;34(12):2518–34.

    Article  Google Scholar 

  11. Fakhraei S, Soltanian-Zadeh H, Fotouhi F. Bias and stability of single variable classifiers for feature ranking and selection. Expert Syst Appl. 2014;41(15):6945–58.

    Article  Google Scholar 

  12. Fraz MM, Rudnicka AR, Owen CG, Strachan DP, Barman SA. Automated arteriole and venule recognition in retinal images using ensemble classification. In: International conference on computer vision theory and applications VISAPP. 2014. pp. 194–202. IEEE.

  13. Geusebroek JM, Smeulders AW, Van De Weijer J. Fast anisotropic gauss filtering. IEEE Trans Image Process. 2003;12(8):938–43.

    Article  MathSciNet  Google Scholar 

  14. Grisan E, Ruggeri A. A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proceedings of the 25th annual international conference of the IEEE Engineering in Medicine and Biology Society. 2003. pp. 890–893.

  15. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, Sharrett AR, Davis MD, Cai J, Atherosclerosis Risk in Communities Study Group. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology. 1999;106(12):2269–80.

    Article  Google Scholar 

  16. Irshad S, Yin X, Li LQ, Salman U. Automatic optic disk segmentation in presence of disk blurring. International Symposium on Visual Computing. Berlin: Springer; 2016. p. 13–23.

    Google Scholar 

  17. Jamal I, Akram MU, Tariq A. Retinal image preprocessing: background and noise segmentation. TELKOMNIKA. 2012;10(3):537–44.

    Article  Google Scholar 

  18. Kendall MG, Gibbons JD. Rank correlation methods. 5th ed. New York: Oxford University Press; 1990.

    MATH  Google Scholar 

  19. Knudtson MC, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BEK. Revised formulas for summarizing retinal vessel diameters. Curr Eye Res. 2003;27(3):143–9.

    Article  Google Scholar 

  20. Kononenko I. Estimating attributes: analysis and extensions of RELIEF. European conference on machine learning. Berlin: Springer; 1994. p. 171–82.

    Google Scholar 

  21. Lee TS. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell. 1996;18(10):959–71.

    Article  Google Scholar 

  22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  Google Scholar 

  23. Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vision. 2001;43(1):29–44.

    Article  Google Scholar 

  24. Liu M, Zhang D, Shen D. Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2014;35(4):1305–19.

    Article  Google Scholar 

  25. Liu Z-F, Zhang Y-Zh, Liu P-Zh, Zhang Y, Luo Y-M, Du Y-Zh, Peng Y. Retinal vessel segmentation using densely connected convolution neural network with colorful fundus images. J Med Imaging Health Inf. 2018;8(6):1300–7.

    Article  Google Scholar 

  26. Mirsharif Q, Tajeripour F, Pourreza H. Automated characterization of blood vessels as arteries and veins in retinal images. Comput Med Imaging Graph. 2013;37(7):607–17.

    Article  Google Scholar 

  27. Niemeijer M, Xu X, Dumitrescu AV, Gupta P, van Ginneken B, Folk JC, Abramoff MD. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs. IEEE Trans Med Imaging. 2011;30(11):1941–50.

    Article  Google Scholar 

  28. Niu G, Han T, Yang BS, Tan ACC. Multi-agent decision fusion for motor fault diagnosis. Mech Syst Signal Process. 2007;21(3):1285–99.

    Article  Google Scholar 

  29. Ortíz D, Cubides M, Suárez A, Zequera M, Quiroga J, Gómez J, Arroyo N. Support system for the preventive diagnosis of hypertensive retinopathy. In: 37th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2010. pp. 5649–5652. IEEE.

  30. Pandey D, Yin X, Wang H, Zhang Y. Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising. Comput Vis Image Underst. 2017;155:162–72.

    Article  Google Scholar 

  31. Parr JC, Spears GFS. Mathematic relationships between the width of a retinal artery and the widths of its branches. Am J Ophthalmol. 1974;77(4):478–83.

    Article  Google Scholar 

  32. Relan D, MacGillivray T, Ballerini L, Trucco E. Retinal vessel classification: sorting arteries and veins. In: 35th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2013. pp. 7396–7399. IEEE.

  33. Rumpf M, Telea A. A continuous skeletonization method based on level sets. In: Proceedings of the symposium on data visualisation. 2002. pp. 151-ff. Eurographics Association.

  34. Schmid C. Constructing models for content-based image retrieval. In: Computer vision and pattern recognition CVPR. 2001. IEEE.

  35. Stokoe NL, Turner RW. Normal retinal vascular pattern. Arteriovenous ratio as a measure of arterial calibre. Br J Ophthalmol. 1966;50(1):21.

    Article  Google Scholar 

  36. Usman A, Khitran SA, Akram MU, Nadeem Y. A robust algorithm for optic disc segmentation from colored fundus images. In: International conference image analysis and recognition. 2014. pp. 303–310. Berlin: Springer.

  37. Vázquez SG, Cancela B, Barreira N, Penedo MG, Saez M. On the automatic computation of the arterio-venous ratio in retinal images: using minimal paths for the artery/vein classification. In: International conference on digital image computing: techniques and applications DICTA. 2010. pp. 599–604. IEEE.

  38. Vázquez SG, Cancela B, Barreira N, Penedo MG, Rodríguez-Blanco M, Seijo MP, de Tuero GC, Barceló MA, Saez M. Improving retinal artery and vein classification by means of a minimal path approach. Mach Vis Appl. 2013;24(5):919–30.

    Article  Google Scholar 

  39. Vijayakumar V, Koozekanani DD, White R, Kohler J, Roychowdhury S, Parhi KK. Artery/vein classification of retinal blood vessels using feature selection. In: 38th annual international conference of the IEEE Engineering in Medicine and Biology Society EMBC. 2016. pp. 1320–1323. IEEE.

  40. Welikala RA, Fraz MM, Hayat S, Rudnicka AR, Foster PJ, Whincup PH, Owen CG, Strachan DP, Barman SA. Automated retinal vessel recognition and measurements on large datasets. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5239–42.

    Google Scholar 

  41. Welikala RA, Foster PJ, Whincup PH, Rudnicka AR, Owen CG, Strachan DP, Barman SA. Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput Biol Med. 2017;90:23–32.

    Article  Google Scholar 

  42. Yin X, Ng BW, He J, Zhang Y, Abbott D. Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE. 2014;9(4):e95943.

    Article  Google Scholar 

  43. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y. Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging. 2015;34(9):1797–807.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Umer Salman from Hameed Latif Hospital, Lahore, Pakistan for assisting in providing ground truth for retinal vessel classification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Xia Yin.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, XX., Irshad, S. & Zhang, Y. Artery/vein classification of retinal vessels using classifiers fusion. Health Inf Sci Syst 7, 26 (2019). https://doi.org/10.1007/s13755-019-0090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-019-0090-4

Keywords