Skip to main content

Advertisement

Log in

Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Purpose

Depression is a global challenge causing psychological and intellectual problems that require efficient diagnosis. Electroencephalogram (EEG) signals represent the functional state of the human brain and can help build an accurate and viable technique for the early prediction and treatment of depression.

Methods

An attention-based gated recurrent units transformer (AttGRUT) time-series model is proposed to efficiently identify EEG perturbations in depressive patients. Statistical, spectral and wavelet features were first extracted from the 60-channel EEG signal data. Then, two feature selection techniques, recursive feature elimination and the Boruta algorithm, both with Shapley additive explanations, were utilised for selecting essential features.

Results

The proposed model outperformed the two baseline and two hybrid time-series models—long short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network-LSTM (CNN-LSTM), and CNN-GRU—achieving an accuracy of up to 98.67%. Feature selection considerably increased the performance across all time-series models.

Conclusion

Based on the obtained results, novel feature selection greatly affected the results of the baseline and hybrid time-series models. The proposed AttGRUT can be implemented and tested in other domains by using different modalities for prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benazzi F. Various forms of depression. Dialogues Clin Neurosci. 2022;8:151–61.

    Google Scholar 

  2. Paykel ES. Basic concepts of depression. Dialogues Clin Neurosci. 2022;10:279–89.

    Google Scholar 

  3. Kamenov K, Caballero FF, Miret M, Leonardi M, Sainio P, Tobiasz-Adamczyk B, Haro JM, Chatterji S, Ayuso-Mateos JL, Cabello M. Which are the most burdensome functioning areas in depression? A cross-national study. Front Psychol. 2016;7:1342.

    Google Scholar 

  4. Cacheda F, Fernandez D, Novoa FJ, Carneiro V. Early detection of depression: social network analysis and random forest techniques. J Med Internet Res. 2019;21(6): e12554.

    Google Scholar 

  5. Ayano G, Demelash S, Haile K, Tulu M, Assefa D, Tesfaye A, Haile K, Solomon M, Chaka A, Tsegay L. Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia. Ann Gen Psychiatry. 2021;20(1):1.

    Google Scholar 

  6. Prabhakar SK, Rajaguru H, Lee SW. A framework for schizophrenia EEG signal classification with nature inspired optimization algorithms. IEEE Access. 2020;8:39875–97.

    Google Scholar 

  7. Usman SM, Khalid S, Bashir Z. Epileptic seizure prediction using scalp electroencephalogram signals. Biocybern Biomed Eng. 2021;41(1):211–20.

    Google Scholar 

  8. Sánchez-Reyes LM, Rodríguez-Reséndiz J, Avecilla-Ramírez GN, García-Gomar ML, Robles-Ocampo JB. Impact of EEG parameters detecting dementia diseases: a systematic review. IEEE Access. 2021;9:78060.

    Google Scholar 

  9. Cannon J, O’Brien AM, Bungert L, Sinha P. Prediction in autism spectrum disorder: a systematic review of empirical evidence. Autism Res. 2021;14(4):604–30.

    Google Scholar 

  10. Sharma G, Parashar A, Joshi AM. DepHNN: a novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomed Signal Process Control. 2021;66: 102393.

    Google Scholar 

  11. Liu GD, Li YC, Zhang W, Zhang L. A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering. 2020;6(4):462–7.

    Google Scholar 

  12. Chen X, Li C, Liu A, McKeown MJ, Qian R, Wang ZJ. Toward open-world electroencephalogram decoding via deep learning: a comprehensive survey. IEEE Signal Process Mag. 2022;39(2):117–34.

    Google Scholar 

  13. Safayari A, Bolhasani H. Depression diagnosis by deep learning using EEG signals: a systematic review. Med Novel Technol Devices. 2021;12: 100102.

    Google Scholar 

  14. Khosla A, Khandnor P, Chand T. Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: a comparative analysis. Biocybern Biomed Eng. 2021;42:108–42.

    Google Scholar 

  15. Rivera MJ, Teruel MA, Maté A, Trujillo J. Diagnosis and prognosis of mental disorders by means of EEG and deep learning: a systematic mapping study. Artif Intell Rev. 2021;2021:1–43.

    Google Scholar 

  16. Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng. 2019;16(5): 051001.

    Google Scholar 

  17. Hosseini MP, Hosseini A, Ahi K. A review on machine learning for EEG signal processing in bioengineering. IEEE Rev Biomed Eng. 2020;14:204–18.

    Google Scholar 

  18. Lei Y, Belkacem AN, Wang X, Sha S, Wang C, Chen C. A convolutional neural network-based diagnostic method using resting-state electroencephalograph signals for major depressive and bipolar disorders. Biomed Signal Process Control. 2022;72: 103370.

    Google Scholar 

  19. Song X, Yan D, Zhao L, Yang L. LSDD-EEGNet: an efficient end-to-end framework for EEG-based depression detection. Biomed Signal Process Control. 2022;75: 103612.

    Google Scholar 

  20. Aydemir E, Tuncer T, Dogan S, Gururajan R, Acharya UR. Automated major depressive disorder detection using melamine pattern with EEG signals. Appl Intell. 2021;51(9):6449–66.

    Google Scholar 

  21. Seal A, Bajpai R, Agnihotri J, Yazidi A, Herrera-Viedma E, Krejcar O. DeprNet: a deep convolution neural network framework for detecting depression using EEG. IEEE Trans Instrum Meas. 2021;70:1–3.

    Google Scholar 

  22. Čukić M, Stokić M, Simić S, Pokrajac D. The successful discrimination of depression from EEG could be attributed to proper feature extraction and not to a particular classification method. Cogn Neurodyn. 2020;14(4):443–55.

    Google Scholar 

  23. Zhao L, Yang L, Li B, Su Z, Liu C. Frontal alpha EEG asymmetry variation of depression patients assessed by entropy measures and Lemple-Ziv complexity. J Med Biol Eng. 2021;41(2):146–54.

    Google Scholar 

  24. Akbari H, Sadiq MT, Rehman AU, Ghazvini M, Naqvi RA, Payan M, Bagheri H, Bagheri H. Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features. Appl Acoust. 2021;179: 108078.

    Google Scholar 

  25. Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16(3): 031001.

    Google Scholar 

  26. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998–6008.

    Google Scholar 

  27. Kenton JD, Toutanova LK. Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019).

  28. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J. An image is worth 16x16 words: transformers for image recognition at scale. https://arxiv.org/abs/2010.11929 (2020).

  29. Dong L, Xu S, Xu B. Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE. pp. 5884–5888 (2018).

  30. Chen L, Lu K, Rajeswaran A, Lee K, Grover A, Laskin M, Abbeel P, Srinivas A, Mordatch I. Decision transformer: reinforcement learning via sequence modeling. Adv Neural Inf Process Syst. 2021;34:15084–97.

    Google Scholar 

  31. Wu N, Green B, Ben X, O'Banion S. Deep transformer models for time series forecasting: the influenza prevalence case. https://arxiv.org/abs/2001.08317 (2020).

  32. Ahmed S, Nielsen IE, Tripathi A, Siddiqui S, Rasool G, Ramachandran RP. Transformers in time-series analysis: a tutorial. https://arxiv.org/abs/2205.01138 (2022).

  33. Wen Q, Zhou T, Zhang C, Chen W, Ma Z, Yan J, Sun L. Transformers in time series: a survey. https://arxiv.org/abs/2202.07125 (2022).

  34. Jha RR, Bhardwaj A, Garg D, Bhavsar A, Nigam A. MHATC: Autism Spectrum Disorder identification utilizing multi-head attention encoder along with temporal consolidation modules. https://arxiv.org/abs/2201.00404 (2021).

  35. Yi P, Chen K, Ma Z, Zhao D, Pu X, Ren Y. EEGDnet: fusing non-local and local self-similarity for 1-D EEG signal denoising with 2-D transformer. https://arxiv.org/abs/2109.04235 (2021).

  36. Bagchi S, Bathula DR. EEG-ConvTransformer for single-trial EEG-based visual stimulus classification. Pattern Recogn. 2022;129: 108757.

    Google Scholar 

  37. Wang YA, Chen YN. What do position embeddings learn? An empirical study of pre-trained language model positional encoding. https://arxiv.org/abs/2010.04903 (2020)

  38. Cavanagh JF, EEG: Depression rest. OpenNeuro. (2021) https://openneuro.org/datasets/ds003478/versions/1.1.0. Accessed 9 June 2022.

  39. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.

    Google Scholar 

  40. Übeyli ED. Statistics over features: EEG signals analysis. Comput Biol Med. 2009;39(8):733–41.

    Google Scholar 

  41. Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 1970;29(3):306–10.

    Google Scholar 

  42. Li M, Chen W. FFT-based deep feature learning method for EEG classification. Biomed Signal Process Control. 2021;66: 102492.

    Google Scholar 

  43. Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. Int Sch Res Not. 2014;2014: 730218.

    Google Scholar 

  44. Marcílio WE, Eler DM. From explanations to feature selection: assessing shap values as feature selection mechanism. In: 2020 33rd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, pp. 340–347 (2020).

  45. Gramegna A, Giudici P. Shapley feature selection. FinTech. 2022;1(1):72–80.

    Google Scholar 

  46. Erickson BJ, Kitamura F. Magician’s corner: 9. Performance metrics for machine learning models. Radiology. 2021;3(3): e200126.

    Google Scholar 

  47. Yu PN, Liu CY, Heck CN, Berger TW, Song D. A sparse multiscale nonlinear autoregressive model for seizure prediction. J Neural Eng. 2021;18(2): 026012.

    Google Scholar 

  48. Attia A, Moussaoui A, Chahir Y. Epileptic seizures identification with autoregressive model and firefly optimization based classification. Evol Syst. 2021;12(3):827–36.

    Google Scholar 

  49. Mohan P, Paramasivam I. Feature reduction using SVM-RFE technique to detect autism spectrum disorder. Evol Intell. 2021;14(2):989–97.

    Google Scholar 

  50. Zulfiker MS, Kabir N, Biswas AA, Nazneen T, Uddin MS. An in-depth analysis of machine learning approaches to predict depression. Curr Res Behav Sci. 2021;2: 100044.

    Google Scholar 

  51. Haque UM, Kabir E, Khanam R. Detection of child depression using machine learning methods. PLoS ONE. 2021;16(12): e0261131.

    Google Scholar 

  52. Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, Jeon HJ. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Comput Biol Med. 2019;112:103381.l.

    Google Scholar 

  53. Alghowinem SM, Gedeon T, Goecke R, Cohn J, Parker G. Interpretation of depression detection models via feature selection methods. In: IEEE transactions on affective computing. (2020).

  54. Zhou T, Ma Z, Wen Q, Wang X, Sun L, Jin R. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting. https://arxiv.org/abs/2201.12740 (2022).

  55. Yu C, Ma X, Ren J, Zhao H, Yi S. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: European conference on computer vision. Springer, Cham; pp. 507–523 (2020).

  56. Mei H, Yang C, Eisner J. Transformer embeddings of irregularly spaced events and their participants. In: International conference on learning representations (2021).

  57. Xu J, Wu H, Wang J, Long M. Anomaly transformer: time series anomaly detection with association discrepancy. https://arxiv.org/abs/2110.02642 (2021).

  58. Liu M, Ren S, Ma S, Jiao J, Chen Y, Wang Z, Song W. Gated transformer networks for multivariate time series classification. https://arxiv.org/abs/2103.14438 (2021).

  59. Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A, Ööpik P, Lass J, Hinrikus H. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput Methods Programs Biomed. 2018;155:11–7.

    Google Scholar 

  60. Mahato S, Paul S. Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst Technol. 2019;25(3):1065–76.

    Google Scholar 

  61. Mahato S, Goyal N, Ram D, Paul S. Detection of depression and scaling of severity using six channel EEG data. J Med Syst. 2020;44(7):1–2.

    Google Scholar 

  62. Lin H, Jian C, Cao Y, Ma X, Wang H, Miao F, Fan X, Yang J, Zhao G, Zhou H. MDD-TSVM: a novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals. Comput Biol Med. 2022;140: 105039.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Prerna Tigga.

Ethics declarations

Conflict of interest

The author confirms that there is no conflict of interest and there are no financial funds.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 278 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigga, N.P., Garg, S. Efficacy of novel attention-based gated recurrent units transformer for depression detection using electroencephalogram signals. Health Inf Sci Syst 11, 1 (2023). https://doi.org/10.1007/s13755-022-00205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-022-00205-8

Keywords

Navigation