Skip to main content

Advertisement

Log in

Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVDs) has become one of the leading causes of death, posing a significant threat to human life. The development of reliable Artificial Intelligence (AI) assisted diagnosis algorithms for cardiac sounds is of great significance for early detection and treatment of CVDs. However, there is scarce research in this field. Existing research mainly faces three major challenges: (1) They mainly limited to murmur classification and cannot achieve murmur grading, but attempting both classification and grading may lead to negative effects between different multi-tasks. (2) They mostly pay attention to unstructured cardiac sound modality and do not consider the structured demographic modality, as it is difficult to balance the influence of heterogeneous modalities. (3) Deep learning methods lack interpretability, which makes it challenging to apply them clinically. To tackle these challenges, we propose a method for cardiac murmur grading and cardiac risk analysis based on heterogeneous modality adaptive multi-task learning. Specifically, a Hierarchical Multi-Task learning-based cardiac murmur detection and grading method (HMT) is proposed to prevent negative interference between different tasks. In addition, a cardiac risk analysis method based on Heterogeneous Multi-modal feature impact Adaptation (HMA) is also proposed, which transforms unstructured modality into structured modality representation, and utilizes an adaptive mode weight learning mechanism to balance the impact between unstructured modality and structured modality, thus enhancing the performance of cardiac risk prediction. Finally, we propose a multi-task interpretability learning module that incorporates an important evaluation using random masks. This module utilizes SHAP graphs to visualize crucial murmur segments in cardiac sound and employs a multi-factor risk decoupling model based on nomograms. And then we gain insights into the cardiac disease risk in both pre-decoupled multi-modality and post-decoupled single-modality scenarios, thus providing a solid foundation for AI assisted cardiac murmur grading and risk analysis. Experimental results on a large real-world CirCor DigiScope PCG dataset demonstrate that the proposed method outperforms the state-of-the-art (SOTA) method in murmur detection, grading, and cardiac risk analysis, while also providing valuable diagnostic evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qiu D, Cheng Y, Wang X. Dual u-net residual networks for cardiac magnetic resonance images super-resolution. Comput Methods Programs Biomed. 2022;218:106707. https://doi.org/10.1016/j.cmpb.2022.106707.

    Article  Google Scholar 

  2. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–22.

    Article  Google Scholar 

  3. Zhang D, Chen Y, Chen Y, Ye S, Cai W, Jiang J, Xu Y, Zheng G, Chen M. Heart disease prediction based on the embedded feature selection method and deep neural network. J Healthcare Eng. 2021;2021:1–9.

    Google Scholar 

  4. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.

    Article  Google Scholar 

  5. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 2005;14(4):170–5.

    Article  Google Scholar 

  6. Coffey S, Cairns BJ, Iung B. The modern epidemiology of heart valve disease. Heart. 2016;102(1):75–85.

    Article  Google Scholar 

  7. Wang F, Syeda-Mahmood T, Beymer D. Finding disease similarity by combining ecg with heart auscultation sound. In: 2007 Computers in Cardiology, 2007; pp. 261–264. IEEE

  8. Reed TR, Reed NE, Fritzson P. Heart sound analysis for symptom detection and computer-aided diagnosis. Simul Model Pract Theory. 2004;12(2):129–46.

    Article  Google Scholar 

  9. Randhawa SK, Singh M. Classification of heart sound signals using multi-modal features. Procedia Computer Science 2015; 58, 165–171. https://doi.org/10.1016/j.procs.2015.08.045 . Second International Symposium on Computer Vision and the Internet (VisionNet’15)

  10. Mustafa M, Abdalla G, Manimurugan S, Alharbi AR. Detection of heartbeat sounds arrhythmia using automatic spectral methods and cardiac auscultatory. J Supercomput. 2020;76:5899–922.

    Article  Google Scholar 

  11. Liu J, Wang H, Yang Z, Quan J, Liu L, Tian J. Deep learning-based computer-aided heart sound analysis in children with left-to-right shunt congenital heart disease. Int J Cardiol. 2022;348:58–64. https://doi.org/10.1016/j.ijcard.2021.12.012.

    Article  Google Scholar 

  12. Davidsen AH, Andersen S, Halvorsen PA, Schirmer H, Reierth E, Melbye H. Diagnostic accuracy of heart auscultation for detecting valve disease: a systematic review. BMJ Open. 2023;13(3): 068121.

    Article  Google Scholar 

  13. Mangione S, Nieman LZ, Gracely E, Kaye D. The teaching and practice of cardiac auscultation during internal medicine and cardiology training: a nationwide survey. Ann Intern Med. 1993;119(1):47–54.

    Article  Google Scholar 

  14. Voigt I, Boeckmann M, Bruder O, Wolf A, Schmitz T, Wieneke H. A deep neural network using audio files for detection of aortic stenosis. Clin Cardiol. 2022;45(6):657–63.

    Article  Google Scholar 

  15. Levin AD, Ragazzi A, Szot SL, Ning T. Extraction and assessment of diagnosis-relevant features for heart murmur classification. Methods. 2022;202:110–6.

    Article  Google Scholar 

  16. Biancaniello T. Innocent murmurs. Circulation. 2005;111(3):20–2.

    Article  Google Scholar 

  17. Elola A, Aramendi E, Oliveira J, Renna F, Coimbra MT, Reyna MA, Sameni R, Clifford GD, Rad AB. Beyond heart murmur detection: automatic murmur grading from phonocardiogram. IEEE J Biomed Health Inform. 2023. https://doi.org/10.1109/JBHI.2023.3275039.

    Article  Google Scholar 

  18. Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M, Dai D, Van Gool L. Multi-task learning for dense prediction tasks: a survey. IEEE Trans Pattern Anal Mach Intell. 2021;44(7):3614–33.

    Google Scholar 

  19. Hao Y, Usama M, Yang J, Hossain MS, Ghoneim A. Recurrent convolutional neural network based multimodal disease risk prediction. Futur Gener Comput Syst. 2019;92:76–83.

    Article  Google Scholar 

  20. Safara F, Doraisamy S, Azman A, Jantan A, Ramaiah ARA. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput Biol Med. 2013;43(10):1407–14.

    Article  Google Scholar 

  21. Debbal S, Bereksi-Reguig F. Computerized heart sounds analysis. Comput Biol Med. 2008;38(2):263–80.

    Article  Google Scholar 

  22. Rath A, Mishra D, Panda G, Pal M. Development and assessment of machine learning based heart disease detection using imbalanced heart sound signal. Biomed Signal Process Control. 2022;76: 103730.

    Article  Google Scholar 

  23. Zeinali Y, Niaki STA. Heart sound classification using signal processing and machine learning algorithms. Mach Learn Appl. 2022;7: 100206.

    Google Scholar 

  24. Chen K, Mudvari A, Barrera FG, Cheng L, Ning T. Heart murmurs clustering using machine learning. In: 2018 14th IEEE International Conference on Signal Processing (ICSP), pp. 94–98 (2018). IEEE

  25. Delgado-Trejos E, Quiceno-Manrique A, Godino-Llorente J, Blanco-Velasco M, Castellanos-Dominguez G. Digital auscultation analysis for heart murmur detection. Ann Biomed Eng. 2009;37:337–53.

    Article  Google Scholar 

  26. Kotb MA, Nabih H, El Zahraa F, El Falaki M, Shaker CW, Refaey MA, Rjoob K. Improving the recognition of heart murmur. Int J Adv Comput Sci Appl. 2016;7(7):283–7.

    Google Scholar 

  27. Kotb MA, Elmahdy HN, Mostafa FEZ, Shaker CW, Refaey MA, Rjoob KWY. Recognition of heart murmur based on machine learning and visual based analysis of phonocardiography. In: Intelligent Computing: Proceedings of the 2018 Computing Conference, 2019; Volume 2, pp. 188–202. Springer

  28. Xiao B, Xu Y, Bi X, Zhang J, Ma X. Heart sounds classification using a novel 1-d convolutional neural network with extremely low parameter consumption. Neurocomputing. 2020;392:153–9.

    Article  Google Scholar 

  29. Patwa A, Rahman MMU, Al-Naffouri TY. Heart murmur and abnormal pcg detection via wavelet scattering transform & a 1d-cnn. arXiv preprint arXiv:2303.11423 (2023).

  30. Oh SL, Jahmunah V, Ooi CP, Tan R-S, Ciaccio EJ, Yamakawa T, Tanabe M, Kobayashi M, Acharya UR. Classification of heart sound signals using a novel deep wavenet model. Comput Methods Programs Biomed. 2020;196: 105604.

    Article  Google Scholar 

  31. Venkataramani VV, Garg A, Priyakumar UD. Modified variable kernel length resnets for heart murmur detection and clinical outcome prediction using multi-positional phonocardiogram recording

  32. Raza A, Mehmood A, Ullah S, Ahmad M, Choi GS, On B-W. Heartbeat sound signal classification using deep learning. Sensors. 2019;19(21):4819.

    Article  Google Scholar 

  33. Li J, Ke L, Du Q, Ding X, Chen X. Research on the classification of ecg and pcg signals based on bilstm-googlenet-ds. Appl Sci. 2022;12(22):11762.

    Article  Google Scholar 

  34. McDonald A, Gales MJ, Agarwal A. Detection of heart murmurs in phonocardiograms with parallel hidden semi-markov models. In: 2022 Computing in Cardiology (CinC), 2022 ; vol. 498, pp. 1–4. IEEE

  35. Wang Z-H, Horng G-J, Hsu T-H, Aripriharta A, Jong G-J. Heart sound signal recovery based on time series signal prediction using a recurrent neural network in the long short-term memory model. J Supercomput. 2020;76:8373–90.

    Article  Google Scholar 

  36. Freeman A, LEVINE SA. The clinical significance of the systolic murmur: a study of 1000 consecutive “non-cardiac" cases. Ann Intern Med. 1933;6(11):1371–85.

    Article  Google Scholar 

  37. He Y, Li W, Zhang W, Zhang S, Pi X, Liu H. Research on segmentation and classification of heart sound signals based on deep learning. Appl Sci. 2021;11(2):651.

    Article  Google Scholar 

  38. Bondareva E, Xia T, Han J, Mascolo C. Towards uncertainty-aware murmur detection in heart sounds via tandem learning. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  39. Araujo M, Zeng D, Palotti J, Xi X, Shi Y, Pyles L, Ni Q. Maiby’s algorithm: A two-stage deep learning approach for murmur detection in mel spectrograms for automatic auscultation of congenital heart disease. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  40. Gündüz AF, Fatih T. Pcg frame classification by classical machine learning methods using spectral features and mfcc based features. Avrupa Bilim ve Teknoloji Dergisi. 2022;42:77–82.

    Google Scholar 

  41. Chang Y, Liu L, Antonescu C. Multi-task prediction of murmur and outcome from heart sound recordings. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. https://doi.org/10.22489/CinC.2022.309

  42. Keren R, Tereschuk M, Luan X. Evaluation of a novel method for grading heart murmur intensity. Arch Pediatr Adolesc Med. 2005;159(4):329–34. https://doi.org/10.1001/archpedi.159.4.329.

    Article  Google Scholar 

  43. Oliveira J, Renna F, Costa P, Nogueira M, Oliveira AC, Elola A, Ferreira C, Jorge A, Rad AB, Reyna M, et al. The circor digiscope phonocardiogram dataset. version 1.0. 0 (2022)

  44. Oliveira J, Renna F, Costa PD, Nogueira M, Oliveira C, Ferreira C, Jorge A, Mattos S, Hatem T, Tavares T, Elola A, Rad AB, Sameni R, Clifford GD, Coimbra MT. The circor digiscope dataset: From murmur detection to murmur classification. IEEE J Biomed Health Inform. 2022;26(6):2524–35. https://doi.org/10.1109/JBHI.2021.3137048.

    Article  Google Scholar 

  45. Cornely AK, Mirsky GM. Heart murmur detection using wavelet time scattering and support vector machines. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  46. Imran Z, Grooby E, Malgi VV, Sitaula C, Aryal S, Marzbanrad F. A fusion of handcrafted feature-based and deep learning classifiers for heart murmur detection. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  47. Kim J, Park G, Suh B. Classification of phonocardiogram recordings using vision transformer architecture. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. https://doi.org/10.22489/CinC.2022.084

  48. Chang Y, Liu L, Antonescu C. Multi-task prediction of murmur and outcome from heart sound recordings. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  49. Ballas A, Papapanagiotou V, Delopoulos A, Diou C. Listen2yourheart: A self-supervised approach for detecting murmur in heart-beat sounds. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  50. Lee J, Kang T, Kim N, Han S, Won H, Gong W, Kwak I-Y. Deep learning based heart murmur detection using frequency-time domain features of heartbeat sounds. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  51. Lu H, Yip JB, Steigleder T, Grießhammer S, Heckel M, Jami NVSJ, Eskofier B, Ostgathe C, Koelpin A. A lightweight robust approach for automatic heart murmurs and clinical outcomes classification from phonocardiogram recordings. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  52. Bruoth E, Bugata P, Gajdoš D, Hudák D, Kmečová V, Staňková M, Szabari A, Vozáriková G, et al.. Murmur identification using supervised contrastive learning. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  53. Xu Y, Bao X, Lam H-K, Kamavuako EN. Hierarchical multi-scale convolutional network for murmurs detection on pcg signals. In: 2022 Computing in Cardiology (CinC), 2022; vol. 498, pp. 1–4. IEEE

  54. Testa A, Gallo D, Langella R. On the processing of harmonics and interharmonics: using Hanning window in standard framework. IEEE Trans Power Deliv. 2004;19(1):28–34. https://doi.org/10.1109/TPWRD.2003.820437.

    Article  Google Scholar 

  55. Hong H, Hong S. simplenomo: a python package of making nomograms for visualizable calculation of logistic regression models. Health Data Sci. 2023;3:0023.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China under Grant 62202332, Grant 62102008, and Diversified Investment Foundation of Tianjin under Grant 21JCQNJC00980, Grant 21JCQNJC01510.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxi Zhou or Shenda Hong.

Ethics declarations

Conflict of interest

No potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, X., Zhang, X. et al. Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning. Health Inf Sci Syst 12, 2 (2024). https://doi.org/10.1007/s13755-023-00249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-023-00249-4

Keywords

Navigation