Skip to main content

Advertisement

Log in

From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine

  • Review
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer’s initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated or analyzed during this study are available from the corresponding author upon reasonable request.

Abbreviations

PCa:

Prostate cancer

SNPs:

Single nucleotide polymorphisms

DHT:

Dihydrotestosterone

ADT:

Androgen deprivation therapy

CRPC:

Castration-resistant PCa

NEPC:

Neuroendocrine PCa

AVPC:

Aggressive variant PCa

AR:

Androgen receptor

AR-v:

Androgen receptor variant

CNVs:

Copy number variations

CNA:

Copy number alterations

DTC:

Disseminated tumor cells

BCR:

Biochemical recurrence

CAD:

Computer-aided diagnosis

IMRT:

Intensity-modulated radiotherapy

MRI:

Magnetic resonance imaging

AI:

Artificial intelligence

ML:

Machine learning

DL:

Deep learning

AUC:

Area under the curve

SVM:

Support vector machines

RF:

Random forests

ANN:

Artificial neural network

ST:

Spatial transcriptomics

IFPTML:

Perturbation-Theory Machine Learning Information Fusion

KG:

Knowledge graph

References

  1. Siegal R, Miller KD, Jemal AJCCJC. Cancer statistics, 2012. CA Cancer J Clin. 2014;64(1):9–29.

    Google Scholar 

  2. Van Toom EE, Verdone JE, Pienta KJ. Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol. 2016;40:9–15.

    Article  Google Scholar 

  3. Beerenwinkel N, et al. Genetic progression and the waiting time to cancer. PLoS Comput Biol. 2007;3(11): e225.

    Article  MathSciNet  Google Scholar 

  4. Liu W, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559–65.

    Article  Google Scholar 

  5. Lin Y, et al. Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. Precis Clin Med. 2022;5(1):pbac001.

    Article  MathSciNet  Google Scholar 

  6. Sathianathen NJ, et al. Landmarks in prostate cancer. Nat Rev Urol. 2018;15(10):627–42.

    Article  Google Scholar 

  7. Etzioni R, et al. Asymptomatic incidence and duration of prostate cancer. Am J Epidemio. 1998;148(8):775–85.

    Article  Google Scholar 

  8. Zhang E, et al. An overview of advances in multi-omics analysis in prostate cancer. Life Sci. 2020;260: 118376.

    Article  Google Scholar 

  9. del Flores-Téllez NJT, Baena EJCL. Experimental challenges to modeling prostate cancer heterogeneity. Cancer Lett. 2022;524:194–205.

    Article  Google Scholar 

  10. Hoang LT, et al. Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in non-small-cell lung cancer. Mol Oncol. 2019;13(11):2406–21.

    Article  Google Scholar 

  11. Luo X, et al. Integration of metabolomic and transcriptomic data reveals metabolic pathway alteration in breast cancer and impact of related signature on survival. J Cell Physiol. 2019;234(8):13021–31.

    Article  Google Scholar 

  12. Stranger BE, Stahl EA, Raj TJG. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187(2):367–83.

    Article  Google Scholar 

  13. Dong J. Intelligent medicine, the wings of global health. Intell Med. 2021;1(1):1–2.

    Article  Google Scholar 

  14. Litwin MS, Tan H-JJJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532–42.

    Article  Google Scholar 

  15. Fontana F, et al. Gonadotropin-releasing hormone receptors in prostate cancer: molecular aspects and biological functions. Mol Sci. 2020;21(24):9511.

    Article  Google Scholar 

  16. Crawford ED, et al. Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations. Prostate Cancer Prostatic Dis. 2019;22(1):24–38.

    Article  Google Scholar 

  17. Yamada S, et al. Prognostic impact of dose reduction in androgen receptor pathway inhibitors for castration-resistant prostate cancer. Prostate Int. 2022;10(1):50–5.

    Article  Google Scholar 

  18. Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15(5):271–86.

    Article  Google Scholar 

  19. Niu Y, et al. ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Lett. 2018;439:47–55.

    Article  Google Scholar 

  20. Manucha V, Henegan J. Clinicopathologic diagnostic approach to aggressive variant prostate cancer. Arch Pathol Lab Med. 2020;144(1):18–23.

    Article  Google Scholar 

  21. Wang Y, et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18(10):581–96.

    Article  Google Scholar 

  22. Buyyounouski MK, et al. Prostate cancer–major changes in the American Joint Committee on Cancer eight edition staging manual. Cancer J Clin. 2017;67(3):245–53.

    Article  Google Scholar 

  23. Martin NE, et al. Prognostic determinants in prostate cancer. Cancer J. 2011;17(6):429.

    Article  Google Scholar 

  24. Isaacs JT. Antagonistic effect of androgen on prostatic cell death. Prostate. 1984;5(5):545–57.

    Article  Google Scholar 

  25. Lamont KR, Tindall DJ. Androgen regulation of gene expression. Adv Cancer Res. 2010;107:137–62.

    Article  Google Scholar 

  26. Chandrasekar T, et al. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4(3):365.

    Google Scholar 

  27. Wang Z, et al. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 2020;17(6):339–50.

    Article  Google Scholar 

  28. Dai X, Wang Z, Wei W. SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle. 2017;16(24):2326–9.

    Article  Google Scholar 

  29. Gerhardt J, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 2012;180(2):848–61.

    Article  Google Scholar 

  30. Kang S-W, et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell. 2006;127(5):999–1013.

    Article  Google Scholar 

  31. Armenia J, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50(5):645–51.

    Article  Google Scholar 

  32. Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: from diagnosis to targeted therapy. Cancer Lett. 2022;534:215619.

    Article  Google Scholar 

  33. Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol. 2021;163: 103370.

    Article  Google Scholar 

  34. Tolkach Y, Kristiansen GJP. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85(1–2):108–16.

    Article  Google Scholar 

  35. Niu Y, et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene. 2010;29(25):3593–604.

    Article  Google Scholar 

  36. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

    Article  Google Scholar 

  37. Puranik AD, et al. Target heterogeneity in oncology: the best predictor for differential response to radioligand therapy in neuroendocrine tumors and prostate cancer. Cancers. 2021;13(14):3607.

    Article  Google Scholar 

  38. Hirano D, et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Oncol. 2004;45(5):586–92.

    Google Scholar 

  39. Aggarwal R, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36(24):2492.

    Article  Google Scholar 

  40. Jamal-Hanjani M, et al. Translational implications of tumor heterogeneity. Clin Cancer Res. 2015;21(6):1258–66.

    Article  Google Scholar 

  41. Abeshouse A, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.

    Article  Google Scholar 

  42. Robinson D, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

    Article  Google Scholar 

  43. van Dessel LF, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019;10(1):1–13.

    Google Scholar 

  44. Ren S, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol. 2018;73(3):322–39.

    Article  Google Scholar 

  45. Blackburn J, et al. TMPRSS2-ERG fusions linked to prostate cancer racial health disparities: a focus on Africa. Prostate. 2019;79(10):1191–6.

    Article  Google Scholar 

  46. Stamatiou KN, et al. The phenomenon of multifocality does not affect the biologic behavior of histologic prostate carcinoma. Med Sci Monit. 2009;15(2):BR61–3.

    Google Scholar 

  47. Arora R, et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Int J Am Cancer Soc. 2004;100(11):2362–6.

    Google Scholar 

  48. Mehra R, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 2007;67(17):7991–5.

    Article  Google Scholar 

  49. Andreoiu M, Cheng LJH. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol. 2010;41(6):781–93.

    Article  Google Scholar 

  50. Suzuki H, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998;58(2):204–9.

    Google Scholar 

  51. Mundbjerg K, et al. Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biol. 2017;18(1):1–15.

    Article  Google Scholar 

  52. Dedigama-Arachchige P, et al. Clonal evaluation of prostate cancer molecular heterogeneity in biopsy samples by dual immunohistochemistry and dual RNA in situ hybridization. Mod Pathol. 2020;33(9):1791–801.

    Article  Google Scholar 

  53. Lu Z, et al. Clonal evaluation of early onset prostate cancer by expression profiling of ERG, SPINK1, ETV1, and ETV4 on whole-mount radical prostatectomy tissue. Prostate. 2020;80(1):38–50.

    Article  Google Scholar 

  54. Haffner MC, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Investig. 2013;123(11):4918–22.

    Article  Google Scholar 

  55. Van Etten JL, Dehm SM. Clonal origin and spread of metastatic prostate cancer. Endocr Relat Cancer. 2016;23(4):R207–17.

    Article  Google Scholar 

  56. Boutros PC, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45.

    Article  Google Scholar 

  57. Brocks D, et al. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep. 2014;8(3):798–806.

    Article  Google Scholar 

  58. Yadav SS et al. Intratumor heterogeneity in prostate cancer. In: Urologic oncology: seminars and original investigations. Amsterdam: Elsevier; 2018.

  59. Cooper CS, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72.

    Article  Google Scholar 

  60. Boyd LK, et al. High-resolution genome-wide copy-number analysis suggests a monoclonal origin of multifocal prostate cancer. Genes Chromosomes Cancer. 2012;51(6):579–89.

    Article  Google Scholar 

  61. Svensson MA, et al. Testing mutual exclusivity of ETS rearranged prostate cancer. Lab Investig. 2011;91(3):404–12.

    Article  Google Scholar 

  62. Paulo P, et al. FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer. 2012;51(3):240–9.

    Article  Google Scholar 

  63. Magi-Galluzzi C, et al. Heterogeneity of androgen receptor content in advanced prostate cancer. Mod Pathol. 1997;10(8):839–45.

    Google Scholar 

  64. Conteduca V, et al. Circulating tumor cell heterogeneity in neuroendocrine prostate cancer by single cell copy number analysis. NPJ Precis Oncol. 2021;5(1):1–8.

    Google Scholar 

  65. Cejas P, et al. Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nat Commun. 2021;12(1):1–11.

    Article  MathSciNet  Google Scholar 

  66. Rudin CM, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19(5):289–97.

    Article  Google Scholar 

  67. Terry SF. Obama’s precision medicine initiative. Genet Test Mol Biomark. 2015;19(3):113.

    Article  Google Scholar 

  68. Shen L, et al. The fourth scientific discovery paradigm for precision medicine and healthcare: challenges ahead. Precis Clin Med. 2021;4(2):80–4.

    Article  Google Scholar 

  69. Saria S, Goldenberg A. Subtyping: What it is and its role in precision medicine. IEEE Intell Syst. 2015;30(4):70–5.

    Article  Google Scholar 

  70. Anceschi U, et al. Novel diagnostic biomarkers of prostate cancer: an update. Curr Med Chem. 2019;26(6):1045–58.

    Article  Google Scholar 

  71. Ahmed HU, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389(10071):815–22.

    Article  Google Scholar 

  72. Roobol MJ, Schröder FH. The rate of overdiagnosis inextricably linked to prostate-specific antigen-based screening for prostate cancer can be quantified in several ways, but what is the practicable message. Eur Urol. 2014;65(6):1056–7.

    Article  Google Scholar 

  73. Saini SJCO. PSA and beyond: alternative prostate cancer biomarkers. Cell Oncol. 2016;39(2):97–106.

    Article  Google Scholar 

  74. Filella X, Foj L. Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers. Int J Mol Sci. 2016;17(11):1784.

    Article  Google Scholar 

  75. Mucci LA, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68–76.

    Article  Google Scholar 

  76. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22.

    Article  Google Scholar 

  77. Darst BF, et al. Combined effect of a polygenic risk score and rare genetic variants on prostate cancer risk. Eur Oncol. 2021;80(2):134–8.

    Google Scholar 

  78. Raspin K, et al. A rare variant in EZH2 is associated with prostate cancer risk. Int J Cancer. 2021;149(5):1089–99.

    Article  Google Scholar 

  79. Kesarwani P, et al. Influence of caspases 8 and 9 gene promoter polymorphism on prostate cancer susceptibility and early development of hormone refractory prostate cancer. BJU Int. 2011;107(3):471–6.

    Article  Google Scholar 

  80. Schumacher FR, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36.

    Article  Google Scholar 

  81. Benafif S, et al. A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol Biomark Prev. 2018;27(8):845–57.

    Article  Google Scholar 

  82. Yeager M, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–9.

    Article  Google Scholar 

  83. Vlaeminck-Guillem V, Gillet G, Rimokh RJ. SRC: marker or actor in prostate cancer aggressiveness. Front Oncol. 2014;4:222.

    Article  Google Scholar 

  84. Eeles R, et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11(1):18–31.

    Article  Google Scholar 

  85. Weichselbaum R, Hellman S. Oligometastases. Nat Rev Clin Oncol. 1995;13(1):8–10.

    Google Scholar 

  86. Joice GA, et al. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology. Curr Opin Urol. 2017;27(6):533–41.

    Article  MathSciNet  Google Scholar 

  87. Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8(6):378–82.

    Article  Google Scholar 

  88. Singh D, et al. Is there a favorable subset of patients with prostate cancer who develop oligometastases? Int J Radiat Oncol Biol Phys. 2004;58(1):3–10.

    Article  Google Scholar 

  89. Khoo V. Is there another bite of the cherry? The case for radical local therapy for oligometastatic disease in prostate cancer. Eur Oncol. 2015;69(1):13–4.

    Google Scholar 

  90. Evangelista L, et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Oncol. 2016;70(1):161–75.

    Google Scholar 

  91. Shah RB, et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004;64(24):9209–16.

    Article  Google Scholar 

  92. Uppal A, et al. Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs. Clin Exp Metastasis. 2014;31(6):735–48.

    Article  Google Scholar 

  93. Dhondt B, et al. Discovery and validation of a serum microRNA signature to characterize oligo-and polymetastatic prostate cancer: not ready for prime time. World J Urol. 2019;37(12):2557–64.

    Article  Google Scholar 

  94. Lussier YA, et al. Oligo-and polymetastatic progression in lung metastasis (es) patients is associated with specific microRNAs. PLoS ONE. 2012;7(12):e50141.

    Article  Google Scholar 

  95. Weckermann D, et al. Micrometastases of bone marrow in localized prostate cancer: correlation with established risk factors. J Clin Oncol. 1999;17(11):3438–43.

    Article  Google Scholar 

  96. Morgan TM, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res. 2009;15(2):677–83.

    Article  Google Scholar 

  97. Mishra A, et al. Homing of cancer cells to the bone. Cancer Microenvironment. 2011;4(3):221–35.

    Article  Google Scholar 

  98. Giancotti FGJC. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155(4):750–64.

    Article  Google Scholar 

  99. Yeh AC, Ramaswamy S. Mechanisms of cancer cell dormancy—another hallmark of cancer? Cancer Res. 2015;75(23):5014–22.

    Article  Google Scholar 

  100. Lam H-M, Vessella RL, Morrissey C. The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow. Drug Discov Today. 2014;11:41–7.

    Article  Google Scholar 

  101. Morrissey C, et al. The biology and clinical implications of prostate cancer dormancy and metastasis. J Mol Med. 2016;94(3):259–65.

    Article  Google Scholar 

  102. Sumiyoshi T, et al. Clinical implications of genomic alterations in metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(2):310–22.

    Article  MathSciNet  Google Scholar 

  103. Kucharczyk MJ, Gravis G, Niazi T. The biology of oligometastatic prostate cancer: a different beast than polymetastatic prostate cancer. Eur Urol Focus. 2018;5(2):117–8.

    Article  Google Scholar 

  104. Tosoian JJ, et al. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat Rev Urol. 2017;14(1):15–25.

    Article  Google Scholar 

  105. Zhang W, et al. Controlling nutritional status score: a new prognostic indicator for patients with oligometastatic prostate cancer. Curr Probl Cancer. 2019;43(5):461–70.

    Article  MathSciNet  Google Scholar 

  106. Corrao G, et al. Exploring miRNA signature and other potential biomarkers for oligometastatic prostate cancer characterization: the biological challenge behind clinical practice. A narrative review. Cancers. 2021;13(13):3278.

    Article  Google Scholar 

  107. Rubin P, Brasacchio R, Katz A. Solitary metastases: illusion versus reality. In: Seminars in radiation oncology. Amsterdam: Elsevier. 2006.

  108. Antonarakis ES, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first-and second-line abiraterone and enzalutamide. J Clin Oncol. 2017;35(19):2149.

    Article  Google Scholar 

  109. Brady L, et al. Inter-and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun. 2021;12(1):1–16.

    Article  MathSciNet  Google Scholar 

  110. Iacobas DA. Powerful quantifiers for cancer transcriptomics. Worl J Clin Oncol. 2020;11(9):679.

    Article  Google Scholar 

  111. Ng K, et al. Overall survival of black and white men with metastatic castration-resistant prostate cancer (mCRPC): a 20-year retrospective analysis in the largest healthcare trust in England. Prostate Cancer Prostatic Dis. 2021;24(3):718–24.

    Article  Google Scholar 

  112. Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63.

    Article  Google Scholar 

  113. Kimura T. East meets West: ethnic differences in prostate cancer epidemiology between East Asians and Caucasians. Chin J Cancer. 2012;31(9):421.

    Article  Google Scholar 

  114. Schröder A, et al. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. Pharmacogenomic J. 2013;13(1):12–20.

    Article  Google Scholar 

  115. Li J, et al. Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet. 2011;20(3):528–40.

    Article  Google Scholar 

  116. Terada N, et al. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther Adv Med Oncol. 2017;9(8):565–73.

    Article  Google Scholar 

  117. Cui JJ, et al. Mass spectrometry-based personalized drug therapy. Mass Spectrom Rev. 2020;39(5–6):523–52.

    Article  Google Scholar 

  118. Feng F, et al. Large-scale pharmacogenomic studies and drug response prediction for personalized cancer medicine. J Genet Genomics. 2021;48(7):540–51.

    Article  Google Scholar 

  119. Malsagova KA, et al. Pharmacogenetic testing: a tool for personalized drug therapy optimization. Pharmaceutics. 2020;12(12):1240.

    Article  Google Scholar 

  120. Iacobas S, Iacobas DAJC. A personalized genomics approach of the prostate cancer. Cells. 2021;10(7):1644.

    Article  Google Scholar 

  121. Surendiran A, Pradhan S, Adithan C. Role of pharmacogenomics in drug discovery and development. J Pharmcol. 2008;40(4):137.

    Google Scholar 

  122. Dimitrakopoulos L, et al. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction. Crit Rev Clin Lab Sci. 2017;54(6):414–32.

    Article  Google Scholar 

  123. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Współczesna Onkologia. 2015;19:68–77.

    Article  Google Scholar 

  124. Clough E, Barrett T. The gene expression omnibus database. In: Statistical genomics. New York Springer; 2016. p. 93–110.

  125. Yan J, et al. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. 2018;19(6):1370–81.

    Google Scholar 

  126. Yang L, et al. Molecular classification of prostate adenocarcinoma by the integrated somatic mutation profiles and molecular network. Sci Rep. 2017;7(1):1–14.

    MathSciNet  Google Scholar 

  127. Ross-Adams H, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine. 2015;2(9):1133–44.

    Article  Google Scholar 

  128. Hsiao T-H, Chiu Y-C, Shao Y-HJ. Multi-omics analysis reveals the BRCA1 mutation and mismatch repair gene signatures associated with survival, protein expression, and copy number alterations in prostate cancer. Transl Cancer Res. 2019;8(4):1279.

    Article  Google Scholar 

  129. Kamoun A, et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol. 2018;29(8):1814–21.

    Article  Google Scholar 

  130. Drake JM, et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell. 2016;166(4):1041–54.

    Article  Google Scholar 

  131. Sinha A, et al. The proteogenomic landscape of curable prostate cancer. Cancer Cell. 2019;35(3):414–27.

    Article  Google Scholar 

  132. Wei Z, et al. Deep learning-based multi-omics integration robustly predicts relapse in prostate cancer. Front Oncol. 2022;12: 893424.

    Article  Google Scholar 

  133. Kiebish MA, et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J Transl Med. 2020;18(1):1–10.

    Article  Google Scholar 

  134. Kwon OK, et al. Comparative proteome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteogenomics. Cancer Genomic Proteomics. 2019;16(4):273–86.

    Article  Google Scholar 

  135. Gao B, et al. Multi-omics analyses detail metabolic reprogramming in lipids, carnitines, and use of glycolytic intermediates between prostate small cell neuroendocrine carcinoma and prostate adenocarcinoma. Metabolites. 2019;9(5):82.

    Article  Google Scholar 

  136. Vittrant B, et al. Immune-focused multi-omics analysis of prostate cancer: leukocyte Ig-Like receptors are associated with disease progression. Oncoimmunology. 2020;9(1):1851950.

    Article  Google Scholar 

  137. Ren S, et al. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteomics. 2016;15(1):154–63.

    Article  Google Scholar 

  138. Feng Y, et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics. 2019;20(1):146.

    Article  Google Scholar 

  139. Danckaert W et al. Microbiome and metabolome dynamics during radiotherapy for prostate cancer. Radiother Oncol, 2023: 109950.

  140. Murphy K, et al. Integrating biomarkers across omic platforms: an approach to improve stratification of patients with indolent and aggressive prostate cancer. Mol Oncol. 2018;12(9):1513–25.

    Article  Google Scholar 

  141. Meng J et al. Integrated multi‐omics data reveals the molecular subtypes and guides the androgen receptor signalling inhibitor treatment of prostate cancer. Clin Transl Med. 2021; 11(12).

  142. Ye X, et al. IPPC: an interactive platform for prostate cancer multi-omics data integration and analysis. J Mol Cell Biol. 2021;13(5):383–5.

    Article  Google Scholar 

  143. Jeibouei S, et al. Personalized medicine in breast cancer: pharmacogenomics approaches. Pharmacogenomics Personalized Med. 2019;12:59–73.

    Article  Google Scholar 

  144. Zanger U. Pharmacogenetics—challenges and opportunities ahead. Front Pharmacol. 2010;1:112.

    Google Scholar 

  145. Ginsburg GS, et al. Genomic and precision medicine: infectious and inflammatory disease. New York: Academic Press; 2019.

    Google Scholar 

  146. Adam T, Aliferis C. Personalized and precision medicine informatics: a workflow-based view. 2020.

  147. Robinson PN. Deep phenotyping for precision medicine. Hum Mutat. 2012;33(5):777–80.

    Article  Google Scholar 

  148. Delude CM. Deep phenotyping: the details of disease. Nature. 2015;527(7576):S14–5.

    Article  Google Scholar 

  149. Yurkovich JT, et al. A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol. 2020;17(3):183–94.

    Article  Google Scholar 

  150. van der Sijde MR, Ng A, Fu J. Systems genetics: from GWAS to disease pathways. Biochem Biophys Acta. 2014;1842(10):1903–9.

    Google Scholar 

  151. Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48.

    Article  Google Scholar 

  152. Golubnitschaja O, et al. Systemic effects reflected in specific biomarker patterns are instrumental for the paradigm change in prostate cancer management: a strategic paper. Cancers. 2022;14(3):675.

    Article  Google Scholar 

  153. Soares S, et al. The influence of miRNAs on radiotherapy treatment in prostate cancer—a systematic review. Front Oncol. 2021;11: 704664.

    Article  Google Scholar 

  154. Konoshenko M, Laktionov P. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors. Andrology. 2022;10(1):51–71.

    Article  Google Scholar 

  155. Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and radiotherapy response in prostate cancer. Andrology. 2021;9(2):529–45.

    Article  Google Scholar 

  156. Couñago F, et al. Clinical applications of molecular biomarkers in prostate cancer. Cancers. 2020;12(6):1550.

    Article  Google Scholar 

  157. Ayroles JF, et al. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet. 2009;41(3):299–307.

    Article  Google Scholar 

  158. Huang W, et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci USA. 2012;109(39):15553–9.

    Article  Google Scholar 

  159. Wu C, et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet. 2012;44(10):1090–7.

    Article  Google Scholar 

  160. Quigley D, Balmain A. Systems genetics analysis of cancer susceptibility: from mouse models to humans. Nat Rev Genet. 2009;10(9):651–7.

    Article  Google Scholar 

  161. Kushner RF, Sorensen KW. Lifestyle medicine: the future of chronic disease management. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):389–95.

    Article  Google Scholar 

  162. Egger G. Development of a lifestyle medicine. Austral J Gener Pract. 2019;48(10):661.

    Google Scholar 

  163. Mutie PM, Giordano GN, Franks PW. Lifestyle precision medicine: the next generation in type 2 diabetes prevention? BMC Med. 2017;15(1):171.

    Article  Google Scholar 

  164. Ho T, et al. Smoking and risk of low- and high-grade prostate cancer: results from the REDUCE study. Clin Cancer Res. 2014;20(20):5331–8.

    Article  Google Scholar 

  165. Sawada N, et al. Alcohol and smoking and subsequent risk of prostate cancer in Japanese men: the Japan Public Health Center-based prospective study. Int J Cancer. 2014;134(4):971–8.

    Article  Google Scholar 

  166. Langlais CS, et al. Post-diagnostic dietary and lifestyle factors and prostate cancer recurrence, progression, and mortality. Curr Oncol Rep. 2021;23(3):37.

    Article  Google Scholar 

  167. Shephard RJ. Physical activity and prostate cancer: an updated review. Sports Med. 2017;47(6):1055–73.

    Article  Google Scholar 

  168. Rock CL, et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA: A Cancer J Clin. 2020;70(4):245–71.

    MathSciNet  Google Scholar 

  169. Kenfield SA, et al. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726–32.

    Article  Google Scholar 

  170. Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311.

    Article  Google Scholar 

  171. Corbett T, et al. Exploring cancer survivors’ views of health behaviour change: “Where do you start, where do you stop with everything?” Psychooncology. 2018;27(7):1816–24.

    Article  Google Scholar 

  172. Lemanska A, et al. Patient activation and patient-reported outcomes of men from a community pharmacy lifestyle intervention after prostate cancer treatment. Supportive Care Cancer. 2022;30(1):347–58.

    Article  Google Scholar 

  173. Bourke L, et al. Exercise for men with prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;69(4):693–703.

    Article  MathSciNet  Google Scholar 

  174. Algotar AM, et al. Comprehensive Lifestyle Improvement Program for Prostate Cancer (CLIPP) is associated with improvement in weight and components of metabolic syndrome in men exposed to androgen deprivation therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):903–9.

    Article  Google Scholar 

  175. Nguyen PL, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2015;67(5):825–36.

    Article  Google Scholar 

  176. Rowland GW, et al. Calcium intake and prostate cancer among African Americans: effect modification by vitamin D receptor calcium absorption genotype. J Bone Miner Res. 2012;27(1):187–94.

    Article  Google Scholar 

  177. CANCER, T.E.O.P., Exercise and Activity for Prostate Cancer. https://zerocancer.org/learn/current-patients/maintain-qol/exercise-and-activity/. Accessed 27 July 2022.

  178. Jones LW, Alfano CM. Exercise-oncology research: past, present, and future. Acta Oncol. 2013;52(2):195–215.

    Article  Google Scholar 

  179. Jiang M, Chen Y, Shen B. Exercise guidelines for cancer patients. In: Shen B, editor. Translational informatics: sports and exercise medicine. Singapore: Springer; 2022. p. 177–202.

    Chapter  Google Scholar 

  180. Chobot A, et al. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev. 2018;34(7): e3042.

    Article  Google Scholar 

  181. Tuka V, Linhart A. Personalised exercise prescription: finding the best for our patients. Eur J Prev Cardiol. 2020;27(13):1366–8.

    Article  Google Scholar 

  182. Riddell MC, et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol. 2017;5(5):377–90.

    Article  Google Scholar 

  183. Gardner JR, Livingston PM, Fraser SF. Effects of exercise on treatment-related adverse effects for patients with prostate cancer receiving androgen-deprivation therapy: a systematic review. J Clin Oncol. 2014;32(4):335–46.

    Article  Google Scholar 

  184. Chen Z, et al. Supervised physical training enhances muscle strength but not muscle mass in prostate cancer patients undergoing androgen deprivation therapy: a systematic review and meta-analysis. Front Physiol. 2019;10:843.

    Article  Google Scholar 

  185. Chen Y et al. PCaLiStDB: a lifestyle database for precision prevention of prostate cancer. Database 2020.

  186. Sheill G, et al. Considerations for exercise prescription in patients with bone metastases: a comprehensive narrative review. PM R. 2018;10(8):843–64.

    Article  Google Scholar 

  187. Dasso NA. How is exercise different from physical activity? A concept analysis. Nurs Forum. 2019;54(1):45–52.

    Article  Google Scholar 

  188. Hart NH, Galvão DA, Newton RU. Exercise medicine for advanced prostate cancer. Curr Opin Support Palliat Care. 2017;11(3):247–57.

    Article  Google Scholar 

  189. Kasivisvanathan V, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378(19):1767–77.

    Article  Google Scholar 

  190. Harmon SA, et al. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Intervent Radiol. 2019;25(3):183.

    Article  Google Scholar 

  191. Stanzione A, et al. Prostate MRI radiomics: a systematic review and radiomic quality score assessment. Eur J Radiol. 2020;129: 109095.

    Article  Google Scholar 

  192. Cuocolo R, et al. Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis. Eur Radiol. 2020;30(12):6877–87.

    Article  Google Scholar 

  193. Syer T, et al. Artificial intelligence compared to radiologists for the initial diagnosis of prostate cancer on magnetic resonance imaging: a systematic review and recommendations for future studies. Cancer. 2021;13(13):3318.

    Article  Google Scholar 

  194. Castillo T, et al. Automated classification of significant prostate cancer on MRI: a systematic review on the performance of machine learning applications. Cancers. 2020;12(6):1606.

    Article  Google Scholar 

  195. Twilt JJ, et al. Artificial intelligence based algorithms for prostate cancer classification and detection on magnetic resonance imaging: a narrative review. Diagnostics. 2021;11(6):959.

    Article  Google Scholar 

  196. Shah U, et al. Recent developments in artificial intelligence-based techniques for prostate cancer detection: a scoping review. Stud Health Inform. 2022;289:268–71.

    Google Scholar 

  197. Sushentsev N, et al. Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review. Insights Imaging. 2022;13(1):1–17.

    Article  Google Scholar 

  198. Abdollahi H, et al. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med (Torino). 2019;124(6):555–67.

    Article  Google Scholar 

  199. Litjens G, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep. 2016;6(1):1–11.

    Article  Google Scholar 

  200. Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol. 1974;111(1):58–64.

    Article  Google Scholar 

  201. Nagpal K, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Med. 2019;2(1):1–10.

    Google Scholar 

  202. Campanella G, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9.

    Article  Google Scholar 

  203. Bulten W et al. Automated gleason grading of prostate biopsies using deep learning. Lancet Oncol. 2019.

  204. Strom P, Kartasalo K, Olsson HJLO. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 2020;21(2):222–32.

    Article  Google Scholar 

  205. Arvaniti E, et al. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  206. Donovan MJ, et al. Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test. Prostate Cancer Prostatic Dis. 2018;21(4):594–603.

    Article  Google Scholar 

  207. Kartasalo K, et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer in biopsies—current status and next steps. Eur Urol Focus. 2021;7(4):687–91.

    Article  Google Scholar 

  208. Checcucci E, et al. Artificial intelligence and neural networks in urology: current clinical applications. Italian J Urol Nephrol. 2019;72(1):49–57.

    Google Scholar 

  209. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17(3):297–303.

    Article  Google Scholar 

  210. Hu Y, et al. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data. BMC Genomics. 2016;17(13):19–29.

    Google Scholar 

  211. Tremoulet AH, et al. Novel data-mining approach identifies biomarkers for diagnosis of Kawasaki disease. Pediatric Res. 2015;78(5):547–53.

    Article  Google Scholar 

  212. Hou Q, et al. RankProd combined with genetic algorithm optimized artificial neural network establishes a diagnostic and prognostic prediction model that revealed C1QTNF3 as a biomarker for prostate cancer. EBioMedicine. 2018;32:234–44.

    Article  Google Scholar 

  213. Chen X et al. An accurate prostate cancer prognosticator using a seven-gene signature plus Gleason score and taking cell type heterogeneity into account. 2012.

  214. Irshad S, et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med. 2013;5(202):202ra122.

    Article  Google Scholar 

  215. Larkin S, et al. Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer. 2012;106(1):157–65.

    Article  Google Scholar 

  216. Hamzeh O, et al. Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data. BMC Bioinform. 2020;21(2):1–10.

    Google Scholar 

  217. Lai Y-L, et al. Identification of a steroid hormone-associated gene signature predicting the prognosis of prostate cancer through an Integrative bioinformatics analysis. Cancers. 2022;14(6):1565.

    Article  Google Scholar 

  218. Chelebian E, et al. Morphological features extracted by AI associated with spatial transcriptomics in prostate cancer. Cancers. 2021;13(19):4837.

    Article  Google Scholar 

  219. Ge J, et al. Picasso: a sparse learning library for high dimensional data analysis in R and Python. J Mach Learn Res. 2019;20(1):1692–6.

    Google Scholar 

  220. Wen F, et al. Fast and positive definite estimation of large covariance matrix for high-dimensional data analysis. IEEE Trans Big Data. 2019;7(3):603–9.

    Article  MathSciNet  Google Scholar 

  221. Yang S et al. ET-lasso: a new efficient tuning of lasso-type regularization for high-dimensional data. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019.

  222. Taguchi Y, Turki TJG. Tensor-decomposition-based unsupervised feature extraction applied to prostate cancer multiomics data. Genes. 2020;11(12):1493.

    Article  Google Scholar 

  223. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16(7):391–403.

    Article  Google Scholar 

  224. Bychkov D, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  225. Zeng T, et al. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief Bioinform. 2016;17(4):576–92.

    Article  Google Scholar 

  226. Wang T-H, et al. Biomarker identification through multiomics data analysis of prostate cancer prognostication using a deep learning model and similarity network fusion. Cancers. 2021;13(11):2528.

    Article  Google Scholar 

  227. Lee G, et al. Supervised multi-view canonical correlation analysis (sMVCCA): Integrating histologic and proteomic features for predicting recurrent prostate cancer. IEEE Trans Med Imaging. 2014;34(1):284–97.

    Article  MathSciNet  Google Scholar 

  228. Li R, et al. Extended application of genomic selection to screen multiomics data for prognostic signatures of prostate cancer. Brief Bioinform. 2021;22(3):197.

    Article  Google Scholar 

  229. Schoots IG, Padhani AR. Personalizing prostate cancer diagnosis with multivariate risk prediction tools: how should prostate MRI be incorporated? World J Urol. 2020;38(3):531–45.

    Article  Google Scholar 

  230. Osses DF, Roobol MJ, Schoots IG. Prediction medicine: biomarkers, risk calculators and magnetic resonance imaging as risk stratification tools in prostate cancer diagnosis. Int J Mol Sci. 2019;20(7):1637.

    Article  Google Scholar 

  231. Kearns JT, Lin DW. Prediction models for prostate cancer outcomes: what is the state of the art in 2017? Curr Opin Urol. 2017;27(5):469–74.

    Article  Google Scholar 

  232. Ren S, et al. CRPMKB: a knowledge base of cancer risk prediction models for systematic comparison and personalized applications. Bioinformatics. 2022;38(6):1669–76.

    Article  MathSciNet  Google Scholar 

  233. Dhruba SR, et al. Dimensionality reduction based transfer learning applied to pharmacogenomics databases. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE.

  234. Lee C-J, Devine B, Tarczy-Hornoch P. A knowledge-based system for intelligent support in pharmacogenomics evidence assessment: ontology-driven evidence representation and retrieval. AMIA Summit Transl Sci Proc. 2017; 175.

  235. Liang G, et al. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020;128: 110255.

    Article  Google Scholar 

  236. Alqahtani A. Application of artificial intelligence in discovery and development of anticancer and antidiabetic therapeutic agents. Evid-Based Complement Altern Med 2022.

  237. Lind AP, Anderson PC. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS ONE. 2019;14(7):e0219774.

    Article  Google Scholar 

  238. Wang Y, et al. Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat Commun. 2018;9(1):1–15.

    Google Scholar 

  239. Santiago C, et al. Prediction of antileishmanial compounds: general model, preparation, and evaluation of 2-acylpyrrole derivatives. J Chem Inf Model. 2022;62(16):3928–40.

    Article  Google Scholar 

  240. Quevedo-Tumailli V, Ortega-Tenezaca B, González-Díaz H. IFPTML mapping of drug graphs with protein and chromosome structural networks vs pre-clinical assay information for discovery of antimalarial compounds. Int J Mol Sci. 2021;22(23):13066.

    Article  Google Scholar 

  241. Cabrera-Andrade A, et al. Perturbation-Theory Machine Learning (PTML) multilabel model of the ChEMBL dataset of preclinical assays for antisarcoma compounds. ACS Omega. 2020;5(42):27211–20.

    Article  Google Scholar 

  242. Nascimento AC, Prudêncio RB, Costa IG. A drug-target network-based supervised machine learning repurposing method allowing the use of multiple heterogeneous information sources. In: Computational methods for drug repurposing. New York: Springer; 2019. p. 281–289.

  243. Sharma A, Rani R. Ensembled machine learning framework for drug sensitivity prediction. IET Syst Biol. 2020;14(1):39–46.

    Article  Google Scholar 

  244. Manjang K, et al. Limitations of explainability for established prognostic biomarkers of prostate cancer. Front Genet. 2021;12:649429.

    Article  Google Scholar 

  245. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning. 2017. PMLR.

  246. Frolov N, et al. Machine learning evaluates changes in functional connectivity under a prolonged cognitive load. Chaos. 2021;31(10): 101106.

    Article  MathSciNet  Google Scholar 

  247. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.

  248. Ancona M et al. Towards better understanding of gradient-based attribution methods for deep neural networks. 2017.

  249. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process. 2017; 30.

  250. Elmarakeby HA, et al. Biologically informed deep neural network for prostate cancer discovery. Nature. 2021;598(7880):348–52.

    Article  Google Scholar 

  251. Toledo-Cortés S, et al. Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. Comput Biol Med. 2022;145: 105472.

    Article  Google Scholar 

  252. Wang Q, et al. Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng. 2017;29(12):2724–43.

    Article  Google Scholar 

  253. Kerdjoudj F, Curé O. RDF knowledge graph visualization from a knowledge extraction system. 2015.

  254. Chen X, Jia S, Xiang Y. A review: knowledge reasoning over knowledge graph. Expert Syst Appl. 2020;141:112948.

    Article  Google Scholar 

  255. Wise C, et al. COVID-19 knowledge graph: accelerating information retrieval and discovery for scientific literature. 2020.

  256. Saha A, et al. Complex sequential question answering: towards learning to converse over linked question answer pairs with a knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018.

  257. Ait-Mlouk A, Jiang L. KBot: a knowledge graph based chatBot for natural language understanding over linked data. IEEE Access. 2020;8:149220–30.

    Article  Google Scholar 

  258. Chen Y, et al. Prostate cancer management with lifestyle intervention: from knowledge graph to Chatbot. Clin Transl Discov. 2022;2(1): e29.

    Article  Google Scholar 

  259. Ye Q, et al. A unified drug–target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun. 2021;12(1):1–12.

    Article  Google Scholar 

  260. Guo Q, et al. A survey on knowledge graph-based recommender systems. IEEE Trans Knowl Data Eng. 2020;34(8):3549–68.

    Article  Google Scholar 

  261. Barros M, Moitinho A, Couto FM. Using research literature to generate datasets of implicit feedback for recommending scientific items. IEEE Access. 2019;7:176668–80.

    Article  Google Scholar 

  262. Sousa D, Couto FM. Biomedical relation extraction with knowledge graph-based recommendations. IEEE J Biomed Health Inform. 2022;26(8):4207–17.

    Article  Google Scholar 

  263. Su X, et al. Attention-based knowledge graph representation learning for predicting drug-drug interactions. Brief Bioinform. 2022;23(3):140.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The study was supported by the National Natural Science Foundation of China (Grant No. 32270690, Grant No. 32070671).

Author information

Authors and Affiliations

Authors

Contributions

SR performed the literature search and data analysis, and wrote the manuscript. BS conceived and supervised the study. HG contributed to the review of the article and provided comments. AD, JD, AP and JL contributed to the review and modification of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bairong Shen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Li, J., Dorado, J. et al. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 12, 6 (2024). https://doi.org/10.1007/s13755-023-00264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-023-00264-5

Keywords

Navigation