Skip to main content

Advertisement

Log in

Jointly constrained group sparse connectivity representation improves early diagnosis of Alzheimer’s disease on routinely acquired T1-weighted imaging-based brain network

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Background

Radiomics-based morphological brain networks (radMBN) constructed from routinely acquired structural MRI (sMRI) data have gained attention in Alzheimer's disease (AD). However, the radMBN suffers from limited characterization of AD because sMRI only characterizes anatomical changes and is not a direct measure of neuronal pathology or brain activity.

Purpose

To establish a group sparse representation of the radMBN under a joint constraint of group-level white matter fiber connectivity and individual-level sMRI regional similarity (JCGS-radMBN).

Methods

Two publicly available datasets were adopted, including 120 subjects from ADNI with both T1-weighted image (T1WI) and diffusion MRI (dMRI) for JCGS-radMBN construction, 818 subjects from ADNI and 200 subjects solely with T1WI from AIBL for validation in early AD diagnosis. Specifically, the JCGS-radMBN was conducted by jointly estimating non-zero connections among subjects, with the regularization term constrained by group-level white matter fiber connectivity and individual-level sMRI regional similarity. Then, a triplet graph convolutional network was adopted for early AD diagnosis. The discriminative brain connections were identified using a two-sample t-test, and the neurobiological interpretation was validated by correlating the discriminative brain connections with cognitive scores.

Results

The JCGS-radMBN exhibited superior classification performance over five brain network construction methods. For the typical NC vs. AD classification, the JCGS-radMBN increased by 1–30% in accuracy over the alternatives on ADNI and AIBL. The discriminative brain connections exhibited a strong connectivity to hippocampus, parahippocampal gyrus, and basal ganglia, and had significant correlation with MMSE scores.

Conclusion

The proposed JCGS-radMBN facilitated the AD characterization of brain network established on routinely acquired imaging modality of sMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data utilized in this study were sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI), available at http://adni.loni.usc.edu/data-samples/access-data, and the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), available at http://aibl.csiro.au.

References

  1. Liu J, Li M, Pan Y, Lan W, Zheng R, Wu F-X, et al. Complex brain network analysis and its applications to brain disorders: a survey. Complexity. 2017;2017:8362741.

    Article  MathSciNet  Google Scholar 

  2. Yao Z, Hu B, Xie Y, Moore P, Zheng J. A review of structural and functional brain networks: small world and atlas. Brain Inform. 2015;2:45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4(6): e1000100.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Zuo N, Cheng J, Jiang T. Diffusion magnetic resonance imaging for Brainnetome: a critical review. Neurosci Bull. 2012;28:375–88.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng J, Zhang S-W, Chen L, Zuo C, AsDN Initiative. Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image. Comput Med Imaging Graph. 2022;98:102057.

    Article  PubMed  Google Scholar 

  6. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17(10):2407–19.

    Article  PubMed  Google Scholar 

  7. He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci. 2008;28(18):4756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T, et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol. 2010;6(11): e1001006.

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  9. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Subaramya S, Kokul T, Nagulan R, Pinidiyaarachchi U, Jeyasuthan M. Detection of Alzheimer’s disease using structural brain network and convolutional neural network. In: 2021 10th International conference on information and automation for sustainability (ICIAfS), 2021. IEEE; 2021. p. 173–8.

  11. Vemuri P, Jack C. Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res Ther. 2010;2(4):1–10.

    Article  Google Scholar 

  12. Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, et al. Regional radiomics similarity networks (R2SNs) in the human brain: reproducibility, small-world properties and a biological basis. Netw Neurosci. 2021;5(3):783–97.

    PubMed  PubMed Central  Google Scholar 

  13. Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, et al. Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment. Adv Sci. 2022;9(12): e2104538.

    Article  Google Scholar 

  14. Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, et al. Neuroimaging in dementia. Semin Neurol. 2017;37(05):510–37.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ghanbari M, Soussia M, Jiang W, Wei D, Yap P-T, Shen D, et al. Alterations of dynamic redundancy of functional brain subnetworks in Alzheimer’s disease and major depression disorders. NeuroImage Clin. 2022;33: 102917.

    Article  PubMed  Google Scholar 

  16. Ghanbari M, Li G, Hsu LM, Yap PT. Accumulation of network redundancy marks the early stage of Alzheimer’s disease. Hum Brain Mapp. 2023;44(8):2993–3006.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Zhang X, Nie J, Zhang G, Fang R, Xu X, et al. Brain connectivity based graph convolutional networks and its application to infant age prediction. IEEE Trans Med Imaging. 2022;41(10):2764–76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jin S, Zeng X, Xia F, Huang W, Liu X. Application of deep learning methods in biological networks. Brief Bioinform. 2021;22(2):1902–17.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X-M, Liang L, Liu L, Tang M-J. Graph neural networks and their current applications in bioinformatics. Front Genet. 2021;12: 690049.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: a review of methods and applications. AI Open. 2020;1:57–81.

    Article  Google Scholar 

  21. Zhao X, Wu J, Peng H, Beheshti A, Monaghan JJ, McAlpine D, et al. Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Netw. 2022;154:56–67.

    Article  PubMed  Google Scholar 

  22. Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, et al. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117–30.

    Article  PubMed  Google Scholar 

  23. Lee H, Lee DS, Kang H, Kim B-N, Chung MK. Sparse brain network recovery under compressed sensing. IEEE Trans Med Imaging. 2011;30(5):1154–65.

    Article  PubMed  Google Scholar 

  24. Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, et al. Sparse network-based models for patient classification using fMRI. Neuroimage. 2015;105:493–506.

    Article  PubMed  Google Scholar 

  25. Yu R, Zhang H, An L, Chen X, Wei Z, Shen D. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification. Hum Brain Mapp. 2017;38(5):2370–83.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wee C-Y, Yap P-T, Zhang D, Wang L, Shen D. Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct Funct. 2014;219:641–56.

    Article  PubMed  Google Scholar 

  27. Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, et al. Multicenter and multichannel pooling GCN for early AD diagnosis based on dual-modality fused brain network. IEEE Trans Med Imaging. 2022;42(2):354–67.

    Article  Google Scholar 

  28. Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, et al. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage. 2014;102:184–91.

    Article  PubMed  Google Scholar 

  29. Hoffer E, Ailon N. Deep metric learning using triplet network. In: Similarity-based pattern recognition: third international workshop, SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015, Proceedings 3. Springer; 2015. p. 84–92.

  30. Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. p. 815–23.

  31. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2008;31(2):210–27.

    Article  Google Scholar 

  32. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw. 2020;32(1):4–24.

    MathSciNet  Google Scholar 

  33. Cui Z, Zhong S, Xu P, He Y, Gong G. PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci. 2013;7:42.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Simpson SL, Bowman FD, Laurienti PJ. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat Surv. 2013;7:1.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  35. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    Article  CAS  PubMed  Google Scholar 

  36. Dhifallah S, Rekik I, AsDN Initiative. Estimation of connectional brain templates using selective multi-view network normalization. Med Image Anal. 2020;59:101567.

    Article  PubMed  Google Scholar 

  37. Liu J, Ji S, Ye J. SLEP: sparse learning with efficient projections. Arizona State University; 2009.

  38. Zhang Y, Zhang H, Chen X, Liu M, Zhu X, Lee S-W, et al. Strength and similarity guided group-level brain functional network construction for MCI diagnosis. Pattern Recognit. 2019;88:421–30.

    Article  PubMed  ADS  Google Scholar 

  39. Sampathkumar VR. Adiag: graph neural network based diagnosis of Alzheimer's disease. https://doi.org/10.48550/arXiv.2101.02870.

  40. Fan C-C, Yang H, Peng L, Zhou X-H, Ni Z-L, Zhou Y-J, et al. BGL-Net: a brain-inspired global–local information fusion network for Alzheimer’s disease based on sMRI. IEEE Trans Cogn Dev Syst. 2023;15(3):1161–9.

    Article  Google Scholar 

  41. Wee C-Y, Liu C, Lee A, Poh JS, Ji H, Qiu A, et al. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage Clin. 2019;23: 101929.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wei Y, Price SJ, Schönlieb C-B, Li C. Predicting conversion of mild cognitive impairment to Alzheimer's disease. 2022. https://doi.org/10.48550/arXiv.2203.04725.

  43. Tian X, Liu Y, Wang L, Zeng X, Huang Y, Wang Z. An extensible hierarchical graph convolutional network for early Alzheimer’s disease identification. Comput Methods Programs Biomed. 2023;238: 107597.

    Article  PubMed  Google Scholar 

  44. Wig GS, Schlaggar BL, Petersen SE. Concepts and principles in the analysis of brain networks. Ann NY Acad Sci. 2011;1224(1):126–46.

    Article  PubMed  ADS  Google Scholar 

  45. Tijms BM, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P, et al. Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging. 2013;34(8):2023–36.

    Article  PubMed  Google Scholar 

  46. Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.

    Article  CAS  PubMed  Google Scholar 

  47. Fox N, Warrington E, Freeborough P, Hartikainen P, Kennedy A, Stevens J, et al. Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain. 1996;119(6):2001–7.

    Article  PubMed  Google Scholar 

  48. Köhler S, Black S, Sinden M, Szekely C, Kidron D, Parker J, et al. Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia. 1998;36(9):901–14.

    Article  PubMed  Google Scholar 

  49. Xue J, Guo H, Gao Y, Wang X, Cui H, Chen Z, et al. Altered directed functional connectivity of the hippocampus in mild cognitive impairment and Alzheimer’s disease: a resting-state fMRI study. Front Aging Neurosci. 2019;11:326.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seo EH, Lee DY, Lee J-M, Park J-S, Sohn BK, Lee DS, et al. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS ONE. 2013;8(1): e53922.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Miao D, Zhou X, Wu X, Chen C, Tian L. Hippocampal morphological atrophy and distinct patterns of structural covariance network in Alzheimer’s disease and mild cognitive impairment. Front Psychol. 2022;13: 980954.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Feng F, Huang W, Meng Q, Hao W, Yao H, Zhou B, et al. Altered volume and structural connectivity of the hippocampus in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci. 2021;13: 705030.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xiong Y, Ye C, Chen Y, Zhong X, Chen H, Sun R, et al. Altered functional connectivity of basal ganglia in mild cognitive impairment and Alzheimer’s disease. Brain Sci. 2022;12(11):1555.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Langlais PJ, Thai L, Hansen L, Galasko D, Alford M, Masliah E. Neurotransmitters in basal ganglia and cortex of Alzheimer’s disease with and without Lewy bodies. Neurology. 1993;43(10):1927.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou B, Liu Y, Zhang Z, An N, Yao H, Wang P, et al. Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res. 2013;10(7):754–66.

    Article  CAS  PubMed  Google Scholar 

  56. Moretti D, Paternicò D, Binetti G, Zanetti O, Frisoni GB. EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment. Neuroimage. 2012;60(1):489–96.

    Article  CAS  PubMed  Google Scholar 

  57. Liu J, Zhang X, Yu C, Duan Y, Zhuo J, Cui Y, et al. Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2016;49(4):1051–64.

    Article  Google Scholar 

  58. Echávarri C, Aalten P, Uylings HB, Jacobs H, Visser PJ, Gronenschild E, et al. Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. Brain Struct Funct. 2011;215:265–71.

    Article  PubMed  Google Scholar 

  59. Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage. 2009;44(4):1415–22.

    Article  PubMed  Google Scholar 

  60. Joko T, Washizuka S, Sasayama D, Inuzuka S, Ogihara T, Yasaki T, et al. Patterns of hippocampal atrophy differ among Alzheimer’s disease, amnestic mild cognitive impairment, and late-life depression. Psychogeriatrics. 2016;16(6):355–61.

    Article  PubMed  Google Scholar 

  61. Barnes J, Scahill RI, Schott JM, Frost C, Rossor MN, Fox NC. Does Alzheimer’s disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dementia Geriatr Cogn Disord. 2005;19(5–6):338–44.

    Article  Google Scholar 

  62. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus. 2009;19(11):1055–64.

    Article  PubMed  Google Scholar 

  63. Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N, et al. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging. 2021;40(4):1279–89.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study utilized data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, available at http://adni.loni.usc.edu) and the Australian Imaging Biomarkers and Lifestyle study (AIBL, available at http://aibl.csiro.au). While the investigators of ADNI and AIBL played a role in designing and implementing these studies and provided the data, they did not directly contribute to the work presented in this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (61802330, 61802331), Natural Science Foundation of Shandong Province (ZR2020QH048) and Yantai City Science and Technology Innovation Development Plan (2023XDRH006).

Author information

Authors and Affiliations

Authors

Contributions

Chuanzhen Zhu and Honglun Li: Conceptualization, Methodology, Data curation, Software, Experiments, and Writing—Original Draft. Zhiwei Song: Methodology, Data curation, Writing—Original Draft. Minbo Jiang: Validation, Formal analysis. Limei Song, Lin Li and Xuan Wang: Writing—Original Draft, Investigation. Qiang Zheng: Conceptualization, Supervision, Project administration and Funding acquisition.

Corresponding author

Correspondence to Qiang Zheng.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Ethical approval

This study has ethical approval, consent to participate, and consent for publication. The Institutional Review Board of all participating centers approved the study procedures.

Informed consent

This study has consent to participate.

Consent for publication

This study has consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 1042 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Li, H., Song, Z. et al. Jointly constrained group sparse connectivity representation improves early diagnosis of Alzheimer’s disease on routinely acquired T1-weighted imaging-based brain network. Health Inf Sci Syst 12, 19 (2024). https://doi.org/10.1007/s13755-023-00269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-023-00269-0

Keywords

Navigation