Skip to main content

Advertisement

Log in

Comprehensive applications of the artificial intelligence technology in new drug research and development

  • Review
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Purpose

Target-based strategy is a prevalent means of drug research and development (R&D), since targets provide effector molecules of drug action and offer the foundation of pharmacological investigation. Recently, the artificial intelligence (AI) technology has been utilized in various stages of drug R&D, where AI-assisted experimental methods show higher efficiency than sole experimental ones. It is a critical need to give a comprehensive review of AI applications in drug R &D for biopharmaceutical field.

Methods

Relevant literatures about AI-assisted drug R&D were collected from the public databases (Including Google Scholar, Web of Science, PubMed, IEEE Xplore Digital Library, Springer, and ScienceDirect) through a keyword searching strategy with the following terms [(“Artificial Intelligence” OR “Knowledge Graph” OR “Machine Learning”) AND (“Drug Target Identification” OR “New Drug Development”)].

Results

In this review, we first introduced common strategies and novel trends of drug R&D, followed by characteristic description of AI algorithms widely used in drug R&D. Subsequently, we depicted detailed applications of AI algorithms in target identification, lead compound identification and optimization, drug repurposing, and drug analytical platform construction. Finally, we discussed the challenges and prospects of AI-assisted methods for drug discovery.

Conclusion

Collectively, this review provides comprehensive overview of AI applications in drug R&D and presents future perspectives for biopharmaceutical field, which may promote the development of drug industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4):e1554. https://doi.org/10.1002/wnan.1554.

    Article  Google Scholar 

  2. Gashaw I, Ellinghaus P, Sommer A, Asadullah K. What makes a good drug target? Drug Discov Today. 2011;16(23–24):1037–43. https://doi.org/10.1016/j.drudis.2011.09.007.

    Article  Google Scholar 

  3. Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci. 2005;26(4):178–82. https://doi.org/10.1016/j.tips.2005.02.007.

    Article  Google Scholar 

  4. Fan K, Cheng L, Li L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Briefings Bioinf. 2021;22(6):bbab271. https://doi.org/10.1093/bib/bbab271.

    Article  Google Scholar 

  5. Mak K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–80. https://doi.org/10.1016/j.drudis.2018.11.014.

    Article  Google Scholar 

  6. Li G, Lin P, Wang K, Gu C-C, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer. 2022;8(1):65–80. https://doi.org/10.1016/j.trecan.2021.10.002.

    Article  Google Scholar 

  7. Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: identification of potential biomarkers, drug targets and drug-target interactions. Drug Res Updat: Rev Comment Antimicrob Anticancer Chemother. 2020;48:100662. https://doi.org/10.1016/j.drup.2019.100662.

    Article  Google Scholar 

  8. Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, Qiu Y, Chen Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):D1398–407. https://doi.org/10.1093/nar/gkab953.

    Article  Google Scholar 

  9. Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Artificial intelligence facilitates drug design in the big data era. Chemom Intell Lab Syst. 2019;194:103850. https://doi.org/10.1016/j.chemolab.2019.103850.

    Article  Google Scholar 

  10. Liu G, Xie Y, Sun Y, Zhang K, Ma J, Huang Y. Drug research and development opportunities in low- and middle-income countries: accelerating traditional medicine through systematic utilization and comprehensive synergy. Infect Dis Poverty. 2022;11(1):27. https://doi.org/10.1186/s40249-022-00954-4.

    Article  Google Scholar 

  11. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. https://doi.org/10.1016/j.drudis.2020.10.010.

    Article  Google Scholar 

  12. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B. 2022;12(7):3049–62. https://doi.org/10.1016/j.apsb.2022.02.002.

    Article  Google Scholar 

  13. Takebe T, Imai R, Ono S. The current status of drug discovery and development as originated in united states academia: the influence of industrial and academic collaboration on drug discovery and development. Clin Transl Sci. 2018;11(6):597–606. https://doi.org/10.1111/cts.12577.

    Article  Google Scholar 

  14. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31. https://doi.org/10.1038/nrd4309.

    Article  Google Scholar 

  15. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani Z, Chang JJ, Okamoto M, Stegmaier K, Golub TR, Boehm JS, Vazquez F, Root DE, Hahn WC, Tsherniak A. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779–84. https://doi.org/10.1038/ng.3984.

    Article  Google Scholar 

  16. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019;9(4):76. https://doi.org/10.3390/metabo9040076.

    Article  Google Scholar 

  17. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5(5):e1257–e1257. https://doi.org/10.1038/cddis.2013.428.

    Article  Google Scholar 

  18. Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Schröder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(D1):D605–12. https://doi.org/10.1093/nar/gks1027.

    Article  Google Scholar 

  19. Gogleva A, Polychronopoulos D, Pfeifer M, Poroshin V, Ughetto M, Martin MJ, Thorpe H, Bornot A, Smith PD, Sidders B, Dry JR, Ahdesmäki M, McDermott U, Papa E, Bulusu KC. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nat Commun. 2022;13(1):1667. https://doi.org/10.1038/s41467-022-29292-7.

    Article  Google Scholar 

  20. Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):1–16. https://doi.org/10.1038/s41597-023-01960-3.

    Article  Google Scholar 

  21. Zador A, Escola S, Richards B, Ölveczky B, Bengio Y, Boahen K, Botvinick M, Chklovskii D, Churchland A, Clopath C, DiCarlo J, Ganguli S, Hawkins J, Körding K, Koulakov A, LeCun Y, Lillicrap T, Marblestone A, Olshausen B, Pouget A, Savin C, Sejnowski T, Simoncelli E, Solla S, Sussillo D, Tolias AS, Tsao D. Catalyzing next-generation artificial intelligence through NeuroAI. Nat Commun. 2023;14(1):1597.

    Article  Google Scholar 

  22. Gupta RR. Application of artificial intelligence and machine learning in drug discovery. In: Heifetz A, editor. Artificial intelligence in drug design. New York: Springer; 2022. p. 113–24.

    Chapter  Google Scholar 

  23. Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. https://doi.org/10.3390/ijms24032026.

    Article  Google Scholar 

  24. Rashid MBMA. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol. 2021;26(1):3–15. https://doi.org/10.1177/2472630320956931.

    Article  Google Scholar 

  25. Recanatini M, Cabrelle C. Drug research meets network science: where are we? J Med Chem. 2020;63(16):8653–66. https://doi.org/10.1021/acs.jmedchem.9b01989.

    Article  Google Scholar 

  26. Li D, Hu J, Zhang L, Li L, Yin Q, Shi J, Guo H, Zhang Y, Zhuang P. Deep learning and machine intelligence: new computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of traditional Chinese medicine. Eur J Pharmacol. 2022;933:175260. https://doi.org/10.1016/j.ejphar.2022.175260.

    Article  Google Scholar 

  27. She S, Chen H, Ji W, Sun M, Cheng J, Rui M, Feng C. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies. Front Pharmacol. 2022;13:1032875. https://doi.org/10.3389/fphar.2022.1032875.

    Article  Google Scholar 

  28. Adams SA, Petersen C. Precision medicine: opportunities, possibilities, and challenges for patients and providers. J Am Med Inf Assoc. 2016;23(4):787–90. https://doi.org/10.1093/jamia/ocv215.

    Article  Google Scholar 

  29. Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36(4):193–202. https://doi.org/10.1007/BF00344251.

    Article  Google Scholar 

  30. Lipton Z. A critical review of recurrent neural networks for sequence learning. 2015.

  31. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–54. https://doi.org/10.1162/neco.2006.18.7.1527.

    Article  MathSciNet  Google Scholar 

  32. Gerstein M. ENCODE leads the way on big data. Nature. 2012;489(7415):208–208. https://doi.org/10.1038/489208b.

    Article  Google Scholar 

  33. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, MIT Press: Montreal, Canada, 2014; pp 2672–2680.

  34. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J., Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V, Warden P, Wicke M, Yu Y, Zhang X. In: TensorFlow: a system for large-scale machine learning, USENIX Symposium on Operating Systems Design and Implementation. 2016.

  35. Ii B. The power of deep learning to ligand-based novel drug discovery. Expert Opin Drug Discov. 2020. https://doi.org/10.1080/17460441.2020.1745183.

    Article  Google Scholar 

  36. Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, Hoyt CT, Hamilton WL. Understanding the performance of knowledge graph embeddings in drug discovery. Artif Intell Life Sci. 2022;2:100036. https://doi.org/10.1016/j.ailsci.2022.100036.

    Article  Google Scholar 

  37. Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28(9):1773–84. https://doi.org/10.1038/s41591-022-01981-2.

    Article  Google Scholar 

  38. Kırboğa KK, Abbasi S, Küçüksille EU. Explainability and white box in drug discovery. Chem Biol Drug Des. 2023;102(1):217–33. https://doi.org/10.1111/cbdd.14262.

    Article  Google Scholar 

  39. Zongsheng W, Xue R, Shao M. Knowledge graph analysis and visualization of AI technology applied in COVID-19. Environ Sci Pollut Res Int. 2022. https://doi.org/10.1007/s11356-021-17800-z.

    Article  Google Scholar 

  40. Galindez G, Matschinske J, Rose TD, Sadegh S, Salgado-Albarrán M, Späth J, Baumbach J, Pauling JK. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci. 2021;1(1):33–41. https://doi.org/10.1038/s43588-020-00007-6.

    Article  Google Scholar 

  41. Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O, Rabiee M, Mostafavi E, Lima EC, Saeb MR, Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem Biol Drug Des. 2022;100(5):699–721. https://doi.org/10.1111/cbdd.14136.

    Article  Google Scholar 

  42. Jiang C, Ngo V, Chapman R, Yue Y, Liu H, Jiang G, Zong N. Deep denoising of raw biomedical knowledge graph from COVID-19 literature, LitCovid, and pubtator: framework development and validation. J Med Internet Res. 2022. https://doi.org/10.2196/38584.

    Article  Google Scholar 

  43. Jin W, Stokes JM, Eastman RT, Itkin Z, Zakharov AV, Collins JJ, Jaakkola TS, Barzilay R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc Natl Acad Sci USA. 2021;118(39):e2105070118. https://doi.org/10.1073/pnas.2105070118.

    Article  Google Scholar 

  44. Verma R, Raj S, Berry U, Ranjith-Kumar CT, Surjit M. Drug repurposing for COVID-19 therapy: pipeline, current status and challenges. In: Sobti RC, Lal SK, Goyal RK, editors. Drug repurposing for emerging infectious diseases and cancer. Singapore: Springer; 2023. p. 451–78.

    Chapter  Google Scholar 

  45. Ozdemir ES, Ranganathan SV, Nussinov R. How has artificial intelligence impacted COVID-19 drug repurposing and what lessons have we learned? Expert Opin Drug Discov. 2022;17(10):1061–5. https://doi.org/10.1080/17460441.2022.2128333.

    Article  Google Scholar 

  46. Shen WX, Liu Y, Chen Y, Zeng X, Tan Y, Jiang YY, Chen YuZ. AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks. Nucleic Acids Res. 2022;50(8):e45. https://doi.org/10.1093/nar/gkac010.

    Article  Google Scholar 

  47. Pham T-H, Qiu Y, Zeng J, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nat Mach Intell. 2021;3(3):247–57. https://doi.org/10.1038/s42256-020-00285-9.

    Article  Google Scholar 

  48. Ju J, Wismans LV, Mustafa DAM, Reinders MJT, van Eijck CHJ, Stubbs AP, Li Y. Robust deep learning model for prognostic stratification of pancreatic ductal adenocarcinoma patients. iScience. 2021;24(12):103415. https://doi.org/10.1016/j.isci.2021.103415.

    Article  Google Scholar 

  49. Long NP, Jung KH, Anh NH, Yan HH, Nghi TD, Park S, Yoon SJ, Min JE, Kim HM, Lim JH, Kim JM, Lim J, Lee S, Hong S-S, Kwon SW. An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer. Cancers. 2019;11(2):155. https://doi.org/10.3390/cancers11020155.

    Article  Google Scholar 

  50. Wei Q, Ramsey SA. Predicting chemotherapy response using a variational autoencoder approach. BMC Bioinf. 2021;22(1):453. https://doi.org/10.1186/s12859-021-04339-6.

    Article  Google Scholar 

  51. Shuangshuang L, Lin Q, Yun T, Fenghui L. In: A deep learning fusion clustering framework for breast cancer subtypes identification by integrating multi-omics data, 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 2020–12; 2020; pp 1710–1714.

  52. Chai H, Zhou X, Zhang Z, Rao J, Zhao H, Yang Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med. 2021;134:104481. https://doi.org/10.1016/j.compbiomed.2021.104481.

    Article  Google Scholar 

  53. Khan D, Shedole S. Leveraging deep learning techniques and integrated omics data for tailored treatment of breast cancer. J Personal Med. 2022;12(5):674. https://doi.org/10.3390/jpm12050674.

    Article  Google Scholar 

  54. Song H, Ruan C, Xu Y, Xu T, Fan R, Jiang T, Cao M, Song J. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med. 2022;247(11):898–909. https://doi.org/10.1177/15353702211065010.

    Article  Google Scholar 

  55. Cao R, Yang F, Ma S-C, Liu L, Zhao Y, Li Y, Wu D-H, Wang T, Lu W-J, Cai W-J, Zhu H-B, Guo X-J, Lu Y-W, Kuang J-J, Huan W-J, Tang W-M, Huang K, Huang J, Yao J, Dong Z-Y. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in colorectal cancer. Theranostics. 2020;10(24):11080–91. https://doi.org/10.7150/thno.49864.

    Article  Google Scholar 

  56. Rong Z, Liu Z, Song J, Cao L, Yu Y, Qiu M, Hou Y. MCluster-VAEs: an end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Comput Biol Med. 2022;150:106085. https://doi.org/10.1016/j.compbiomed.2022.106085.

    Article  Google Scholar 

  57. Schulte-Sasse R, Budach S, Hnisz D, Marsico A. Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nat Mach Intell. 2021;3(6):513–26. https://doi.org/10.1038/s42256-021-00325-y.

    Article  Google Scholar 

  58. Wang Y, Yang Y, Chen S, Wang J. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Briefings Bioinf. 2021;22(5):bbab048. https://doi.org/10.1093/bib/bbab048.

    Article  Google Scholar 

  59. Strogatz SH. Exploring complex networks. Nature. 2001;410(6825):268–76. https://doi.org/10.1038/35065725.

    Article  Google Scholar 

  60. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2):101–13. https://doi.org/10.1038/nrg1272.

    Article  Google Scholar 

  61. Have CT, Jensen LJ. Are graph databases ready for bioinformatics? Bioinformatics. 2013;29(24):3107–8. https://doi.org/10.1093/bioinformatics/btt549.

    Article  Google Scholar 

  62. Balaur I, Mazein A, Saqi M, Lysenko A, Rawlings CJ, Auffray C. Recon2Neo4j: applying graph database technologies for managing comprehensive genome-scale networks. Bioinformatics. 2017;33(7):1096–8. https://doi.org/10.1093/bioinformatics/btw731.

    Article  Google Scholar 

  63. Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. 2018;19(6):1370–81. https://doi.org/10.1093/bib/bbx066.

    Article  Google Scholar 

  64. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68. https://doi.org/10.1038/nrg2918.

    Article  Google Scholar 

  65. Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo G, Gutierrez C, Gayo JEL, Kirrane S, Neumaier S, Polleres A, Navigli R, Ngomo A-CN, Rashid SM, Rula A, Schmelzeisen L, Sequeda J, Staab S, Zimmermann A. Knowledge graphs. ACM Comput Surv. 2022;54(4):1–37. https://doi.org/10.1145/3447772.

    Article  Google Scholar 

  66. CFP: special issue on knowledge graphs.

  67. Walsh B, Mohamed SK, Nováček V. In: BioKG: a knowledge graph for relational learning on biological data, association for computing machinery. 2020 pp 3173–3180.

  68. Shin J, Piao Y, Bang D, Kim S, Jo K. DRPreter: interpretable anticancer drug response prediction using knowledge-guided graph neural networks and transformer. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232213919.

    Article  Google Scholar 

  69. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, Green A, Khankhanian P, Baranzini SE. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017;6:e26726. https://doi.org/10.7554/eLife.26726.

    Article  Google Scholar 

  70. Liu Z, Chen Q, Lan W, Liang J, Chen YP, Chen B. A survey of network embedding for drug analysis and prediction. Curr Protein Pept Sci. 2020. https://doi.org/10.2174/1389203721666200702145701.

    Article  Google Scholar 

  71. Zhang R, Hristovski D, Schutte D, Kastrin A, Fiszman M, Kilicoglu H. Drug repurposing for COVID-19 via knowledge graph completion. J Biomed Inf. 2021;115:103696. https://doi.org/10.1016/j.jbi.2021.103696.

    Article  Google Scholar 

  72. Sun Z, Deng ZH, Nie JY, Tang J. RotatE: knowledge graph embedding by relational rotation in complex space. [Preprint] 2019 Available from: https://doi.org/10.48550/arXiv.1902.10197

  73. Novak TP, Hoffman DL. Residual scaling: an alternative to correspondence analysis for the graphical representation of residuals from log-linear models. Multivar Behav Res. 1990;25(3):351–70. https://doi.org/10.1207/s15327906mbr2503_7.

    Article  Google Scholar 

  74. Al-Obeidat F, Rocha Á, Khan MS, Maqbool F, Razzaq S. Parallel tensor factorization for relational learning. Neural Comput Appl. 2022;34(11):8455–64. https://doi.org/10.1007/s00521-021-05692-6.

    Article  Google Scholar 

  75. Chachlakis DG, Tsitsikas Y, Papalexakis EE, Markopoulos PP. In: Robust multi-relational learning with absolute projection rescal, 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2019–11; 2019; pp 1–5.

  76. Cai B, Xiang Y, Gao L, Wu D, Zhang H, Jin J, Luan T. From wide to deep: dimension lifting network for parameter-efficient knowledge graph embedding. [Preprint] 2023 Available from: https://doi.org/10.48550/arXiv.2303.12816

  77. Xie Z, Zhu R, Zhang M, Liu J. In: SparseMult: a tensor decomposition model based on sparse relation matrix, 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 2022–11; 2022; pp 761–764.

  78. Ramos CCO, Rodrigues D, de Souza AN, Papa JP. On the study of commercial losses in Brazil: a binary black hole algorithm for theft characterization. IEEE Trans Smart Grid. 2018;9(2):676–83. https://doi.org/10.1109/TSG.2016.2560801.

    Article  Google Scholar 

  79. Kacha L, Zitouni A, Djoudi M. KAB: a new k-anonymity approach based on black hole algorithm. J King Saud Univ: Comput Inform Sci. 2022;34(7):4075–88. https://doi.org/10.1016/j.jksuci.2021.04.014.

    Article  Google Scholar 

  80. Hatamlou A. Black hole: a new heuristic optimization approach for data clustering. Inf Sci. 2013;222:175–84. https://doi.org/10.1016/j.ins.2012.08.023.

    Article  MathSciNet  Google Scholar 

  81. Yao L, Mao C, Luo Y. KG-BERT: BERT for knowledge graph completion. [Preprint] 2019 Available from: https://doi.org/10.48550/arXiv.1909.03193

  82. Cabalar P, Diéguez M. STeLP—a tool for temporal answer set programming. In: Delgrande JP, Faber W, editors. Logic programming and nonmonotonic reasoning. Cham: Springer; 2011. p. 370–5.

    Chapter  Google Scholar 

  83. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020. https://doi.org/10.3390/molecules25225277.

    Article  Google Scholar 

  84. Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc. 2014;21(e2):e278-286. https://doi.org/10.1136/amiajnl-2013-002512.

    Article  Google Scholar 

  85. Usha T, Shanmugarajan D, Goyal AK, Kumar CS, Middha SK. Recent updates on computer-aided drug discovery: time for a paradigm shift. Curr Top Med Chem. 2017;17(30):3296–307. https://doi.org/10.2174/1568026618666180101163651.

    Article  Google Scholar 

  86. Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: from classical to artificial intelligence. Front Chem. 2020. https://doi.org/10.3389/fchem.2020.00343.

    Article  Google Scholar 

  87. Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K, Tylkowski B. Machine learning in drug design: use of artificial intelligence to explore the chemical structure-biological activity relationship. Wiley Interdiscip Rev-Comput Mol Sci. 2022. https://doi.org/10.1002/wcms.1568.

    Article  Google Scholar 

  88. Zulkifli MH, Abdullah ZL, Mohamed Yusof NIS, Mohd Fauzi F. In silico toxicity studies of traditional Chinese herbal medicine: a mini review. Curr Opin Struct Biol. 2023;80:102588.

    Article  Google Scholar 

  89. Canzler S, Schor J, Busch W, Schubert K, Rolle-Kampczyk UE, Seitz H, Kamp H, von Bergen M, Buesen R, Hackermüller J. Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol. 2020;94(2):371–88. https://doi.org/10.1007/s00204-020-02656-y.

    Article  Google Scholar 

  90. Wu Q, Cai C, Guo P, Chen M, Wu X, Zhou J, Luo Y, Zou Y, Liu A-L, Wang Q, Kuang Z, Fang J. In silico identification and mechanism exploration of hepatotoxic ingredients in traditional Chinese medicine. Front Pharmacol. 2019;10:458. https://doi.org/10.3389/fphar.2019.00458.

    Article  Google Scholar 

  91. Conn JGM, Carter JW, Conn JJA, Subramanian V, Baxter A, Engkvist O, Llinas A, Ratkova EL, Pickett SD, McDonagh JL, Palmer DS. Blinded predictions and post hoc analysis of the second solubility challenge data: exploring training data and feature set selection for machine and deep learning models. J Chem Inf Model. 2023;63(4):1099–113. https://doi.org/10.1021/acs.jcim.2c01189.

    Article  Google Scholar 

  92. Cysewski P, Jeliński T, Przybyłek M, Nowak W, Olczak M. Solubility characteristics of acetaminophen and phenacetin in binary mixtures of aqueous organic solvents: experimental and deep machine learning screening of green dissolution media. Pharmaceutics. 2022;14(12):2828. https://doi.org/10.3390/pharmaceutics14122828.

    Article  Google Scholar 

  93. Surov AO, Ramazanova AG, Voronin AP, Drozd KV, Churakov AV, Perlovich GL. Virtual screening, structural analysis, and formation thermodynamics of carbamazepine cocrystals. Pharmaceutics. 2023;15(3):836.

    Article  Google Scholar 

  94. Khan AKA, Malim NHAH. Comparative studies on resampling techniques in machine learning and deep learning models for drug-target interaction prediction. Molecules (Basel, Switzerland). 2023;28(4):1663. https://doi.org/10.3390/molecules28041663.

    Article  Google Scholar 

  95. Ma W, Zhang S, Li Z, Jiang M, Wang S, Guo N, Li Y, Bi X, Jiang H, Wei Z. Predicting drug-target affinity by learning protein knowledge from biological networks. IEEE J Biomed Health Inf. 2023;27(4):2128–37. https://doi.org/10.1109/JBHI.2023.3240305.

    Article  Google Scholar 

  96. Bian J, Zhang X, Zhang X, Xu D, Wang G. MCANet: shared-weight-based MultiheadCrossAttention network for drug-target interaction prediction. Briefings Bioinf. 2023;24(2):bbad082. https://doi.org/10.1093/bib/bbad082.

    Article  Google Scholar 

  97. Firoz A, Malik A, Ali HM, Akhter Y, Manavalan B, Kim C-B. PRR-HyPred: A two-layer hybrid framework to predict pattern recognition receptors and their families by employing sequence encoded optimal features. Int J Biol Macromol. 2023;234:123622. https://doi.org/10.1016/j.ijbiomac.2023.123622.

    Article  Google Scholar 

  98. Bugnon LA, Fenoy E, Edera AA, Raad J, Stegmayer G, Milone DH. Transfer learning: the key to functionally annotate the protein universe. Patterns. 2023;4(2):100691. https://doi.org/10.1016/j.patter.2023.100691.

    Article  Google Scholar 

  99. Sanderson T, Bileschi ML, Belanger D, Colwell LJ. ProteInfer, deep neural networks for protein functional inference. Elife. 2023;12:e80942. https://doi.org/10.7554/eLife.80942.

    Article  Google Scholar 

  100. Hsieh KL, Wang YY, Chen LY, Zhao ZM, Savitz S, Jiang XQ, Tang J, Kim YJ. Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-02353-5.

    Article  Google Scholar 

  101. Ren ZH, Yu CQ, Li LP, You ZH, Guan YJ, Wang XF, Pan J. BioDKG-DDI: predicting drug-drug interactions based on drug knowledge graph fusing biochemical information. Brief Funct Genomics. 2022;21(3):216–29. https://doi.org/10.1093/bfgp/elac004.

    Article  Google Scholar 

  102. Zhang J, Chen M, Liu J, Peng DD, Dai Z, Zou XY, Li ZC. A Knowledge-graph-based multimodal deep learning framework for identifying drug-drug interactions. Molecules. 2023. https://doi.org/10.3390/molecules28031490.

    Article  Google Scholar 

  103. Chen S, Semenov I, Zhang F, Yang Y, Geng J, Feng X, Meng Q, Lei K. An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network. Comput Biol Med. 2023;169:107900. https://doi.org/10.1016/j.compbiomed.2023.107900.

    Article  Google Scholar 

  104. Lin, X., Quan, Z., Wang, Z.-J., Ma, T., Zeng, X. In KGNN: knowledge graph neural network for drug-drug interaction prediction, (2021). pp 2739–2745. Accesssed 01 July 2021

  105. Zhang S, Lin X, Zhang X. Discovering DTI and DDI by Knowledge Graph with MHRW and Improved Neural Network. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE: 2021.

  106. Zhu J, Sova P, Xu QW, Dombek KM, Xu EY, Vu H, Tu ZD, Brem RB, Bumgarner RE, Schadt EE. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol. 2012. https://doi.org/10.1371/journal.pbio.1001301.

    Article  Google Scholar 

  107. Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, Carstensen M, Peters A, Rathmann W, Roden M, Strauch K, Suhre K, Kastenmuller G, Prokisch H, Theis FJ. The human blood metabolome-transcriptome interface. PLoS Genet. 2015;11(6):e1005274. https://doi.org/10.1371/journal.pgen.1005274.

    Article  Google Scholar 

  108. Huang JL, Niu CQ, Green CD, Yang L, Mei HK, Han JDJ. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput Biol. 2013. https://doi.org/10.1371/journal.pcbi.1002998.

    Article  Google Scholar 

  109. Bonnet E, Calzone L, Michoel T. Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol. 2015. https://doi.org/10.1371/journal.pcbi.1003983.

    Article  Google Scholar 

  110. Mohamed SK, Novácek V, Nounu A. Discovering protein drug targets using knowledge graph embeddings. Bioinformatics. 2020;36(2):603–10. https://doi.org/10.1093/bioinformatics/btz600.

    Article  Google Scholar 

  111. Kim S, Thapa I, Ali H, A multi-omics graph database for data integration and knowledge extraction. In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, ACM: 2022.

  112. Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, Mann M. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692–702. https://doi.org/10.1038/s41587-021-01145-6.

    Article  Google Scholar 

  113. Zhang N, Bi Z, Liang X, Cheng S, Hong H, Deng S, Lian J, Zhang Q, Chen H, OntoProtein: protein pretraining with gene ontology embedding. arXiv: 2022.

  114. Zhang P, Wang F, Hu JY, Sorrentino R. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep. 2015. https://doi.org/10.1038/srep12339.

    Article  Google Scholar 

  115. Peng W, Chen TL, Liu HC, Dai W, Yu N, Lan W. Improving drug response prediction based on two-space graph convolution. Comput Biol Med. 2023. https://doi.org/10.1016/j.compbiomed.2023.106859.

    Article  Google Scholar 

  116. Boobier S, Hose DRJ, Blacker AJ, Nguyen BN. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat Commun. 2020;11(1):5753. https://doi.org/10.1038/s41467-020-19594-z.

    Article  Google Scholar 

  117. Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics. 2021;37(8):1140–7. https://doi.org/10.1093/bioinformatics/btaa921.

    Article  Google Scholar 

  118. Bileschi ML, Belanger D, Bryant D, Sanderson T, Carter B, Sculley D, Bateman A, DePristo MA, Colwell LJ. Using deep learning to annotate the protein universe. Nat Biotechnol. 2022;40(6):932. https://doi.org/10.1038/s41587-021-01179-w.

    Article  Google Scholar 

  119. Wang H, Huang F, Xiong Z, Zhang W. A heterogeneous network-based method with attentive mea-path extraction for predicting drug-target interactions. Briefings Bioinf. 2022;23(4):bbac184. https://doi.org/10.1093/bib/bbac184.

    Article  Google Scholar 

  120. Nath A, Kumari P, Chaube R. Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives. Methods Mol Biol. 2018;1762:21–30. https://doi.org/10.1007/978-1-4939-7756-7_2.

    Article  Google Scholar 

  121. Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery. Pharmacol Ther. 2013;138(3):333–408. https://doi.org/10.1016/j.pharmthera.2013.01.016.

    Article  Google Scholar 

  122. Fathima S, Sinha S, Donakonda S. Network analysis identifies drug targets and small molecules to modulate apoptosis resistant cancers. Cancers. 2021;13(4):851. https://doi.org/10.3390/cancers13040851.

    Article  Google Scholar 

  123. Li X, Ma J, Leng L, Han M, Li M, He F, Zhu Y. MoGCN: a multi-omics integration method based on graph convolutional network for cancer subtype analysis. Front Genet. 2022;13:806842.

    Article  Google Scholar 

  124. Yoon B-H, Kim S-K, Kim S-Y. Use of graph database for the integration of heterogeneous biological data. Genomics Inform. 2017;15(1):19–27. https://doi.org/10.5808/GI.2017.15.1.19.

    Article  Google Scholar 

  125. Paliwal S, de Giorgio A, Neil D, Michel J-B, Lacoste AM. Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs. Sci Rep. 2020;10(1):18250. https://doi.org/10.1038/s41598-020-74922-z.

    Article  Google Scholar 

  126. Ji B-Y, You Z-H, Cheng L, Zhou J-R, Alghazzawi D, Li L-P. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Sci Rep. 2020;10(1):6658. https://doi.org/10.1038/s41598-020-63735-9.

    Article  Google Scholar 

  127. Lan W, Wang J, Li M, Liu J, Li Y, Wu F-X, Pan Y. Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing. 2016;206:50–7. https://doi.org/10.1016/j.neucom.2016.03.080.

    Article  Google Scholar 

  128. Nguyen T, Le H, Quinn TP, Nguyen T, Le TD. and Venkatesh, SGraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btaa921.

    Article  Google Scholar 

  129. Lin X, Li X, Lin X. A Review on applications of computational methods in drug screening and design. Molecules. 2020;25(6):1375. https://doi.org/10.3390/molecules25061375.

    Article  Google Scholar 

  130. Schneider P, Schneider G. De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun. 2017;53(14):2272–4. https://doi.org/10.1039/C6CC09693J.

    Article  Google Scholar 

  131. Cockroft NT, Cheng X, Fuchs JR. STarFish: a stacked ensemble target fishing approach and its application to natural products. J Chem Inf Model. 2019;59(11):4906–20. https://doi.org/10.1021/acs.jcim.9b00489.

    Article  Google Scholar 

  132. Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21(2):204–7. https://doi.org/10.1016/j.drudis.2015.01.009.

    Article  Google Scholar 

  133. Friedrich L, Cingolani G, Ko Y-H, Iaselli M, Miciaccia M, Perrone MG, Neukirch K, Bobinger V, Merk D, Hofstetter RK, Werz O, Koeberle A, Scilimati A, Schneider G. Learning from nature: from a marine natural product to synthetic cyclooxygenase-1 inhibitors by automated de novo design. Adv Sci. 2021;8(16):e2100832. https://doi.org/10.1002/advs.202100832.

    Article  Google Scholar 

  134. Vineetha S, Bhat CCS, Idicula SM. MicroRNA–mRNA interaction network using TSK-type recurrent neural fuzzy network. Gene. 2013;515(2):385–90. https://doi.org/10.1016/j.gene.2012.12.063.

    Article  Google Scholar 

  135. Kwon M-S, Kim Y, Lee S, Namkung J, Yun T, Yi SG, Han S, Kang M, Kim SW, Jang J-Y, Park T. Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer. BMC Genomics. 2015;16(9):1–10. https://doi.org/10.1186/1471-2164-16-S9-S4.

    Article  Google Scholar 

  136. Madhukar NS, Khade PK, Huang L, Gayvert K, Galletti G, Stogniew M, Allen JE, Giannakakou P, Elemento O. A Bayesian machine learning approach for drug target identification using diverse data types. Nat Commun. 2019;10(1):5221. https://doi.org/10.1038/s41467-019-12928-6.

    Article  Google Scholar 

  137. Arora P, Adams CH, Gudelsky G, DasGupta B, Desai PB. Plasma and brain pharmacokinetics of letrozole and drug interaction studies with temozolomide in NOD-scid gamma mice and sprague dawley rats. Cancer Chemother Pharmacol. 2019;83(1):81–9. https://doi.org/10.1007/s00280-018-3705-6.

    Article  Google Scholar 

  138. Skalic M, Jiménez J, Sabbadin D, De Fabritiis G. Shape-based generative modeling for de novo drug design. J Chem Inf Model. 2019;59(3):1205–14. https://doi.org/10.1021/acs.jcim.8b00706.

    Article  Google Scholar 

  139. Kang S, Cho K. Conditional molecular design with deep generative models. J Chem Inf Model. 2019;59(1):43–52. https://doi.org/10.1021/acs.jcim.8b00263.

    Article  Google Scholar 

  140. Ståhl N, Falkman G, Karlsson A, Mathiason G, Boström J. Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model. 2019;59(7):3166–76. https://doi.org/10.1021/acs.jcim.9b00325.

    Article  Google Scholar 

  141. Liu X, Ye K, van Vlijmen HWT, Izerman AP, van Westen GJP. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. J Cheminf. 2023;15(1):24. https://doi.org/10.1186/s13321-023-00694-z.

    Article  Google Scholar 

  142. Bos PH, Houang EM, Ranalli F, Leffler AE, Boyles NA, Eyrich VA, Luria Y, Katz D, Tang H, Abel R, Bhat S. AutoDesigner, a de novo design algorithm for rapidly exploring large chemical space for lead optimization: application to the design and synthesis of d-amino acid oxidase inhibitors. J Chem Inf Model. 2022;62(8):1905–15. https://doi.org/10.1021/acs.jcim.2c00072.

    Article  Google Scholar 

  143. Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, Schutjens M-HDB. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20(8):1027–34. https://doi.org/10.1016/j.drudis.2015.05.001.

    Article  Google Scholar 

  144. Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology compounds, pathways phenotypes and computational approaches for colorectal cancer. Biochim et Biophys Acta (BBA): Rev Cancer. 2019;1871(2):434–54.

    Google Scholar 

  145. Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: off-target based drug repurposing in cancer. Semin Cancer Biol. 2021;68:209–29. https://doi.org/10.1016/j.semcancer.2020.02.003.

    Article  Google Scholar 

  146. Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics. 2022;12(2):796–816. https://doi.org/10.7150/thno.67375.

    Article  Google Scholar 

  147. Zeng X, Zhu S, Lu W, Liu Z, Huang J, Zhou Y, Fang J, Huang Y, Guo H, Li L, Trapp BD, Nussinov R, Eng C, Loscalzo J, Cheng F. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci. 2020;11(7):1775–97. https://doi.org/10.1039/C9SC04336E.

    Article  Google Scholar 

  148. Kang D, Pang X, Lian W, Lvjie X, Wang J, Jia H, Zhang B, Liu AL, Guan-Hua D. Discovery of VEGFR2 inhibitors by integrating naïve Bayesian classification molecular docking and drug screening approaches. RSC Adv. 2018. https://doi.org/10.1039/c7ra12259d.

    Article  Google Scholar 

  149. Al-Ali H, Lee D-H, Danzi MC, Nassif H, Gautam P, Wennerberg K, Zuercher B, Drewry DH, Lee JK, Lemmon VP, Bixby JL. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth. ACS Chem Biol. 2015;10(8):1939–51. https://doi.org/10.1021/acschembio.5b00289.

    Article  Google Scholar 

  150. Huang YR, Bin YJ, Zeng PF, Lan W, Zhong C. NetPro: neighborhood interaction-based drug repositioning via label propagation. IEEE-ACM Trans Comput Biol Bioinform. 2023;20(3):2159–69. https://doi.org/10.1109/Tcbb.2023.3234331.

    Article  Google Scholar 

  151. Lim H, Poleksic A, Yao Y, Tong H, He D, Zhuang L, Meng P, Xie L. Large-scale off-target identification using fast and accurate dual regularized one-class collaborative filtering and its application to drug repurposing. PLoS Comput Biol. 2016;12(10):e1005135. https://doi.org/10.1371/journal.pcbi.1005135.

    Article  Google Scholar 

  152. Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol. 2022;29(11):1056–67. https://doi.org/10.1038/s41594-022-00849-w.

    Article  Google Scholar 

  153. Bordin N, Sillitoe I, Nallapareddy V, Rauer C, Lam SD, Waman VP, Sen N, Heinzinger M, Littmann M, Kim S, Velankar S, Steinegger M, Rost B, Orengo C. AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms. Commun Biol. 2023;6(1):1–12. https://doi.org/10.1038/s42003-023-04488-9.

    Article  Google Scholar 

  154. Ye Q, Hsieh C-Y, Yang Z, Kang Y, Chen J, Cao D, He S, Hou T. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun. 2021;12(1):6775. https://doi.org/10.1038/s41467-021-27137-3.

    Article  Google Scholar 

  155. Ahneman DT, Estrada JG, Lin S, Dreher SD, Doyle AG. Predicting reaction performance in C–N cross-coupling using machine learning. Science. 2018;360(6385):186–90. https://doi.org/10.1126/science.aar5169.

    Article  Google Scholar 

  156. Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, Hinkley T, Aragon-Camarasa G, Kitson PJ, Angelone D, Cronin L. Organic synthesis in a modular robotic system driven by a chemical programming language. Science. 2019;363(6423):eaav2211. https://doi.org/10.1126/science.aav2211.

    Article  Google Scholar 

  157. Xiong J, Xiong Z, Chen K, Jiang H, Zheng M. Graph neural networks for automated de novo drug design. Drug Discov Today. 2021;26(6):1382–93. https://doi.org/10.1016/j.drudis.2021.02.011.

    Article  Google Scholar 

  158. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. J Cheminf. 2017;9(1):1–14. https://doi.org/10.1186/s13321-017-0235-x.

    Article  Google Scholar 

  159. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkab255.

    Article  Google Scholar 

  160. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067–9. https://doi.org/10.1093/bioinformatics/bty707.

    Article  Google Scholar 

  161. Ochoa D, Hercules A, Carmona M, Suveges D, Baker J, Malangone C, Lopez I, Miranda A, Cruz-Castillo C, Fumis L, Bernal-Llinares M, Tsukanov K, Cornu H, Tsirigos K, Razuvayevskaya O, Buniello A, Schwartzentruber J, Karim M, Ariano B, Osorio M, Ricardo E, Ferrer J, Ge X, Machlitt-Northen S, Gonzalez-Uriarte A, Saha S, Tirunagari S, Mehta C, Roldán-Romero JM, Horswell S, Young S, Ghoussaini M, Hulcoop DG, Dunham I, McDonagh EM. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 2023. https://doi.org/10.1093/nar/gkac1046.

    Article  Google Scholar 

  162. PandaOmics | Insilico Medicine.

  163. Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, Aliper A, Zhavoronkov A, Scheibye-Knudsen M. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis. 2022;13(11):1–9. https://doi.org/10.1038/s41419-022-05437-w.

    Article  Google Scholar 

  164. Ivanenkov YA, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V, Kamya P, Aliper A, Ren F, Zhavoronkov A. Chemistry42: an ai-driven platform for molecular design and optimization. J Chem Inf Model. 2023;63(3):695–701. https://doi.org/10.1021/acs.jcim.2c01191.

    Article  Google Scholar 

  165. McDermott J, Sturtevant D, Kathad U, Varma S, Zhou J, Kulkarni A, Biyani N, Schimke C, Reinhold WC, Elloumi F, Carr P, Pommier Y, Bhatia K. Artificial intelligence platform, RADR®, aids in the discovery of DNA damaging agent for the ultra-rare cancer atypical teratoid rhabdoid tumors. Front Drug Discov. 2022. https://doi.org/10.3389/fddsv.2022.1033395.

    Article  Google Scholar 

  166. Lazarczyk M, Duda K, Mickael ME, Ak O, Paszkiewicz J, Kowalczyk A, Horbańczuk JO, Sacharczuk M. Adera2.0: a drug repurposing workflow for neuroimmunological investigations using neural networks. Molecules. 2022;27(19):6453. https://doi.org/10.3390/molecules27196453.

    Article  Google Scholar 

  167. Sadeghi S, Lu J, Ngom A. A network-based drug repurposing method via non-negative matrix factorization. Bioinformatics. 2022;38(5):1369–77. https://doi.org/10.1093/bioinformatics/btab826.

    Article  Google Scholar 

  168. Pavlopoulos GA, Paez-Espino D, Kyrpides NC, Iliopoulos I. Empirical comparison of visualization tools for larger-scale network analysis. Adv Bioinf. 2017;2017:e1278932. https://doi.org/10.1155/2017/1278932.

    Article  Google Scholar 

  169. Xu B, Liu Y, Yu S, Wang L, Dong J, Lin H, Yang Z, Wang J, Xia F. A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network. BMC Med Genomics. 2019;12(S10):188. https://doi.org/10.1186/s12920-019-0627-z.

    Article  Google Scholar 

  170. Weichselbraun A, Gindl S, Scharl A. Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge-Based Syst. 2014;69:78–85. https://doi.org/10.1016/j.knosys.2014.04.039.

    Article  Google Scholar 

  171. Ferrante M, Boccato T, Toschi N. Semantic brain decoding: from fMRI to conceptually similar image reconstruction of visual stimuli. [Preprint] 2023 Available from: https://doi.org/10.48550/arXiv.2212.06726

  172. Domingo-Fernández D, Gadiya Y, Patel A, Mubeen S, Rivas-Barragan D, Diana CW, Misra BB, Healey D, Rokicki J, Colluru V. Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery. PLoS Comput Biol. 2022;18(2):e1009909. https://doi.org/10.1371/journal.pcbi.1009909.

    Article  Google Scholar 

  173. Subpaiboonkit S, Li X, Zhao X, Scells H, Zuccon G. Causality discovery with domain knowledge for drug-drug interactions discovery. In: Li J, Wang S, Qin S, Li X, Wang S, editors. Advanced data mining and applications. Cham: Springer; 2019. p. 632–47.

    Chapter  Google Scholar 

  174. Rivas-Barragan D, Mubeen S, Guim Bernat F, Hofmann-Apitius M, Domingo-Fernández D. Drug2ways: Reasoning over causal paths in biological networks for drug discovery. PLoS Comput Biol. 2020;16(12):e1008464. https://doi.org/10.1371/journal.pcbi.1008464.

    Article  Google Scholar 

  175. Kondinski A, Bai J, Mosbach S, Akroyd J, Kraft M. Knowledge engineering in chemistry: from expert systems to agents of creation. Acc Chem Res. 2023;56(2):128–39. https://doi.org/10.1021/acs.accounts.2c00617.

    Article  Google Scholar 

  176. Hasselgren A, Kralevska K, Gligoroski D, Pedersen SA, Faxvaag A. Blockchain in healthcare and health sciences—a scoping review. Int J Med Inf. 2020;134:104040. https://doi.org/10.1016/j.ijmedinf.2019.104040.

    Article  Google Scholar 

  177. Haleem A, Javaid M, Singh RP, Suman R, Rab S. Blockchain technology applications in healthcare: an overview. Int J Intell Netw. 2021;2:130–9. https://doi.org/10.1016/j.ijin.2021.09.005.

    Article  Google Scholar 

  178. Ghadge A, Bourlakis M, Kamble S, Seuring S. Blockchain implementation in pharmaceutical supply chains: A review and conceptual framework. Int J Prod Res. 2023;61(19):6633–51. https://doi.org/10.1080/00207543.2022.2125595.

    Article  Google Scholar 

  179. Sarabi S, Han Q, de Vries B, Romme AGL, Almassy D. The nature-based solutions case-based system: a hybrid expert system. J Environ Manag. 2022;324:116413. https://doi.org/10.1016/j.jenvman.2022.116413.

    Article  Google Scholar 

  180. Sundin I, Voronov A, Xiao H, Papadopoulos K, Bjerrum EJ, Heinonen M, Patronov A, Kaski S, Engkvist O. Human-in-the-loop assisted de novo molecular design. J Cheminf. 2022. https://doi.org/10.1186/s13321-022-00667-8.

    Article  Google Scholar 

  181. Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today: Technol. 2019. https://doi.org/10.1016/j.ddtec.2020.06.001.

    Article  Google Scholar 

  182. Eisenstein M. Active machine learning helps drug hunters tackle biology. Nat Biotechnol. 2020;38(5):512–4. https://doi.org/10.1038/s41587-020-0521-4.

    Article  Google Scholar 

  183. Ding X, Cui R, Yu J, Liu T, Zhu T, Wang D, Chang J, Fan Z, Liu X, Chen K, Jiang H, Li X, Luo X, Zheng M. Active learning for drug design: a case study on the plasma exposure of orally administered drugs. J Med Chem. 2021;64(22):16838–53. https://doi.org/10.1021/acs.jmedchem.1c01683.

    Article  Google Scholar 

  184. A breakthrough milestone in AI-powered drug discovery reached linking biology and chemistry with AI. https://insilico.com/blog/pcc.

  185. The Process and Costs of Drug Development. 2022. https://ftloscience.com/process-costs-drug-development/.

Download references

Funding

This work was supported by the National Key R&D Program of China (2023YFC3502900), the 3-year Action Plan for Shanghai TCM Development and Inheritance Program [ZY(2021-2023)-0401] and the National Natural Science Foundation of China (82104521).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Luan, Weidong Zhang or Guangyong Zheng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lu, D., Xiao, Z. et al. Comprehensive applications of the artificial intelligence technology in new drug research and development. Health Inf Sci Syst 12, 41 (2024). https://doi.org/10.1007/s13755-024-00300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-024-00300-y

Keywords

Navigation