Skip to main content
Log in

Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Objective

The study aims to identify distinct population-specific comorbidity progression patterns, timely detect potential comorbidities, and gain better understanding of the progression of comorbid conditions among patients.

Methods

This work presents a comorbidity progression analysis framework that utilizes temporal comorbidity networks (TCN) for patient stratification and comorbidity prediction. We propose a TCN construction approach that utilizes longitudinal, temporal diagnosis data of patients to construct their TCN. Subsequently, we employ the TCN for patient stratification by conducting preliminary analysis, and typical prescription analysis to uncover potential comorbidity progression patterns in different patient groups. Finally, we propose an innovative comorbidity prediction method by utilizing the distance-matched temporal comorbidity network (TCN-DM). This method identifies similar patients with disease prevalence and disease transition patterns and combines their diagnosis information with that of the current patient to predict potential comorbidity at the patient’s next visit.

Results

This study validated the capability of the framework using a real-world dataset MIMIC-III, with heart failure (HF) as interested disease to investigate comorbidity progression in HF patients. With TCN, this study can identify four significant distinctive HF subgroups, revealing the progression of comorbidities in patients. Furthermore, compared to other methods, TCN-DM demonstrated better predictive performance with F1-Score values ranging from 0.454 to 0.612, showcasing its superiority.

Conclusions

This study can identify comorbidity patterns for individuals and population, and offer promising prediction for future comorbidity developments in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The dataset can be obtained from the website of MIMIC-III clinical database (https://physionet.org/content/mimiciii/1.4/).

References

  1. Zhao Y, Atun R, Oldenburg B, et al. Physical multimorbidity, health service use, and catastrophic health expenditure by socioeconomic groups in China: An analysis of population-based panel data. Lancet Global Health. 2020;8(6):840–9. https://doi.org/10.1016/S2214-109X(20)30127-3.

    Article  Google Scholar 

  2. Barnett K, Mercer SW, Norbury M, et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43. https://doi.org/10.1016/S0140-6736(12)60240-2.

    Article  Google Scholar 

  3. Giannoula A, Centeno E, Mayer M-A, et al. A system-level analysis of patient disease trajectories based on clinical, phenotypic and molecular similarities. Bioinformatics. 2021;37(10):1435–43. https://doi.org/10.1093/bioinformatics/btaa964.

    Article  Google Scholar 

  4. La DTV, Zhao Y, Arokiasamy P, et al. Multimorbidity and out-of-pocket expenditure for medicines in China and India. BMJ Global Health. 2022;7(11): 007724. https://doi.org/10.1136/bmjgh-2021-007724.

    Article  Google Scholar 

  5. Monchka BA, Leung CK, Nickel NC, et al. The effect of disease co-occurrence measurement on multimorbidity networks: a population-based study. BMC Med Res Methodol. 2022;22(1):165. https://doi.org/10.1186/s12874-022-01607-8.

    Article  Google Scholar 

  6. Rayman G, Akpan A, Cowie M, et al. Managing patients with comorbidities: future models of care. Fut Healthc J. 2022;9(2):101–5. https://doi.org/10.7861/fhj.2022-0029.

    Article  Google Scholar 

  7. Lai HJ, Tan TH, Lin CS, Chen YF, Lin HH. Designing a clinical decision support system to predict readmissions for patients admitted with all-cause conditions. J Ambient Intell Human Comput. 2020;8:1–10.

    Google Scholar 

  8. Fan J, Sun Z, Yu C, et al. Multimorbidity patterns and association with mortality in 0.5 million Chinese adults. Chin Med J. 2022;135(6):648–57. https://doi.org/10.1097/CM9.0000000000001985.

    Article  Google Scholar 

  9. Vetrano DL, Roso-Llorach A, Fernández S, et al. Twelve-year clinical trajectories of multimorbidity in a population of older adults. Nat Commun. 2020;11(1):3223. https://doi.org/10.1038/s41467-020-16780-x.

    Article  Google Scholar 

  10. Khan A, Uddin S, Srinivasan U. Comorbidity network for chronic disease: a novel approach to understand type 2 diabetes progression. Int J Med Inform. 2018;115:1–9. https://doi.org/10.1016/j.ijmedinf.2018.04.001.

    Article  Google Scholar 

  11. Khan A, Uddin S, Srinivasan U. Chronic disease prediction using administrative data and graph theory: the case of type 2 diabetes. Expert Syst Appl. 2019;136:230–41. https://doi.org/10.1016/j.eswa.2019.05.048.

    Article  Google Scholar 

  12. Liang Y, Guo C. Heart failure disease prediction and stratification with temporal electronic health records data using patient representation. Biocybern Biomed Eng. 2023;43(1):124–41. https://doi.org/10.1016/j.bbe.2022.12.008.

    Article  Google Scholar 

  13. Lu H, Uddin S. Embedding-based link predictions to explore latent comorbidity of chronic diseases. Health Inform Sci Syst. 2023;11(2):1–11. https://doi.org/10.1007/s13755-022-00206-7.

    Article  Google Scholar 

  14. Wang L, Qiu H, Luo L, et al. Age- and sex-specific differences in multimorbidity patterns and temporal trends on assessing hospital discharge records in southwest China: Network-based study. J Med Internet Res. 2022;24(2):27146. https://doi.org/10.2196/27146.

    Article  Google Scholar 

  15. Wang T, Qiu RG, Yu M, et al. Directed disease networks to facilitate multiple-disease risk assessment modeling. Decis Support Syst. 2020;129: 113171. https://doi.org/10.1016/j.dss.2019.113171.

    Article  Google Scholar 

  16. Kalgotra P, Sharda R. When will I get out of the hospital? Modeling length of stay using comorbidity networks. J Manag Inform Syst. 2021;38(4):1150–84. https://doi.org/10.1080/07421222.2021.1990618.

    Article  Google Scholar 

  17. Yang P, Qiu H, Wang L, et al. Early prediction of high-cost inpatients with ischemic heart disease using network analytics and machine learning. Expert Syst Appl. 2022;210: 118541. https://doi.org/10.1016/j.eswa.2022.118541.

    Article  Google Scholar 

  18. Mei H, Jia R, Qiao G, et al. Human disease clinical treatment network for the elderly: analysis of the medicare inpatient length of stay and readmission data. Biometrics. 2023;79(1):404–16. https://doi.org/10.1111/biom.13549.

    Article  MathSciNet  Google Scholar 

  19. Hossain ME, Uddin S, Khan A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Syst Appl. 2021;164: 113918. https://doi.org/10.1016/j.eswa.2020.113918.

    Article  Google Scholar 

  20. Xu Z, Zhang Q, Yip PSF. Predicting post-discharge self-harm incidents using disease comorbidity networks: a retrospective machine learning study. J Affect Disord. 2020;277:402–9. https://doi.org/10.1016/j.jad.2020.08.044.

    Article  Google Scholar 

  21. Lu H, Uddin S. A disease network-based recommender system framework for predictive risk modelling of chronic diseases and their comorbidities. Appl Intell. 2022;52(9):10330–40. https://doi.org/10.1007/s10489-021-02963-6.

    Article  Google Scholar 

  22. Hu Z, Qiu H, Wang L, et al. Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission. BMC Med Inform Decis Mak. 2022;22(1):62. https://doi.org/10.1186/s12911-022-01802-z.

    Article  Google Scholar 

  23. Choudhary GI, Fränti P. Predicting onset of disease progression using temporal disease occurrence networks. Int J Med Inform. 2023;175: 105068. https://doi.org/10.1016/j.ijmedinf.2023.105068.

    Article  Google Scholar 

  24. Yan Q, Lin X-Y, Peng C-W, Zheng W-J, et al. Network-based analysis between SARS-CoV-2 receptor ACE2 and common host factors in COVID-19 and asthma: potential mechanistic insights. Biomed Signal Process Control. 2024;87: 105502. https://doi.org/10.1016/j.bspc.2023.105502.

    Article  Google Scholar 

  25. Lakshmi K, Vadivu G. A novel approach for disease comorbidity prediction using weighted association rule mining. J Ambient Intell Human Comput. 2019;89:1–8. https://doi.org/10.1007/s12652-019-01217-1.

    Article  Google Scholar 

  26. Xu Z, Zhang J, Zhang Q, Xuan Q, Yip PSF. A comorbidity knowledge-aware model for disease prognostic prediction. IEEE Trans Cybernet. 2021;52(9):9809–19. https://doi.org/10.1109/TCYB.2021.3070227.

    Article  Google Scholar 

  27. Caruana A, Bandara M, Musial K, Catchpoole D, Kennedy PJ. Machine learning for administrative health records: a systematic review of techniques and applications. Artif Intell Med. 2023;48:102642. https://doi.org/10.1016/j.artmed.2023.102642.

    Article  Google Scholar 

  28. Kindig D, Stoddart G. What is population health? Am J Public Health. 2003;93(3):380–3. https://doi.org/10.2105/ajph.93.3.380.

    Article  Google Scholar 

  29. Soysaler C-A, Andrei CL, Ceban O, Sinescu C-J. Comorbidity patterns in patients at cardiovascular hospital admission. Medicines. 2023;10(4):26. https://doi.org/10.3390/medicines10040026.

    Article  Google Scholar 

  30. Rashid J, Batool S, Kim J, Wasif Nisar M, Hussain A, Juneja S, Kushwaha R. An augmented artificial intelligence approach for chronic diseases prediction. Front Public Health. 2022;10: 860396. https://doi.org/10.3389/fpubh.2022.860396.

    Article  Google Scholar 

  31. Han M, Wu H, Chen Z, Li M, Zhang X. A survey of multi-label classification based on supervised and semi-supervised learning. Int J Mach Learn Cybernet. 2023;14(3):697–724. https://doi.org/10.1007/s13042-022-01658-9.

    Article  Google Scholar 

  32. Zhang Y, Golbus JR, Wittrup E, Aaronson KD, Najarian K. Enhancing heart failure treatment decisions: interpretable machine learning models for advanced therapy eligibility prediction using ehr data. BMC Med Inform Decis Mak. 2024;24(1):53. https://doi.org/10.1186/s12911-024-02453-y.

    Article  Google Scholar 

  33. Duan H, Sun Z, Dong W, He K, Huang Z. On clinical event prediction in patient treatment trajectory using longitudinal electronic health records. IEEE J Biomed Health Inform. 2020;24(7):2053–63. https://doi.org/10.1109/JBHI.2019.2962079.

    Article  Google Scholar 

  34. Yashudas A, Gupta D, Prashant G, Dua A, AlQahtani D, Reddy ASK. DEEP-CARDIO: recommendation system for cardiovascular disease prediction using iot network. IEEE Sens J. 2024;24:9. https://doi.org/10.1109/JSEN.2024.3373429.

    Article  Google Scholar 

  35. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure. J Am Coll Cardiol. 2022;79(17):263–421. https://doi.org/10.1016/j.jacc.2021.12.012.

    Article  Google Scholar 

  36. Li D, Zheng C, Zhao J, Liu Y. Diagnosis of heart failure from imbalance datasets using multi-level classification. Biomed Signal Process Control. 2023;81: 104538. https://doi.org/10.1016/j.bspc.2022.104538.

    Article  Google Scholar 

  37. Manemann SM, Chamberlain AM, Boyd CM, et al. Multimorbidity in heart failure: effect on outcomes. J Am Geriatr Soc. 2016;64(7):1469–74. https://doi.org/10.1111/jgs.14206.

    Article  Google Scholar 

  38. Gupta V, Mittal M, Mittal M, Mittal V, Chaturvedi Y. Detection of r-peaks using fractional fourier transform and principal component analysis. J Ambient Intell Human Comput. 2022;7:1–12. https://doi.org/10.1007/s12652-021-03484-3.

    Article  Google Scholar 

  39. Drozd M, Relton SD, Walker AMN, et al. Association of heart failure and its comorbidities with loss of life expectancy. Heart. 2021;107(17):1417–21. https://doi.org/10.1136/heartjnl-2020-317833.

    Article  Google Scholar 

  40. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3(1): 160035. https://doi.org/10.1038/sdata.2016.35.

    Article  Google Scholar 

  41. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  Google Scholar 

  42. Boytcheva S, Angelova G, Angelov Z, Tcharaktchiev D. Mining comorbidity patterns using retrospective analysis of big collection of outpatient records. Health Inform Sci Syst. 2017;5:1–9. https://doi.org/10.1007/s13755-017-0024-y.

    Article  Google Scholar 

  43. Roni R-G, Tsipi H, Ofir B-A, et al. Disease evolution and risk-based disease trajectories in congestive heart failure patients. J Biomed Inform. 2022;125: 103949. https://doi.org/10.1016/j.jbi.2021.103949.

    Article  Google Scholar 

  44. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

    Article  Google Scholar 

  45. Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI. 1979;1(2):224–7. https://doi.org/10.1109/TPAMI.1979.4766909.

    Article  Google Scholar 

  46. Cikes M, Sanchez-Martinez S, Claggett B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail. 2019;21(1):74–85. https://doi.org/10.1002/ejhf.1333.

    Article  Google Scholar 

  47. Lorrain F, White HC. Structural equivalence of individuals in social networks. J Math Sociol. 1977;1:67–98. https://doi.org/10.1016/B978-0-12-442450-0.50012-2.

    Article  Google Scholar 

  48. Ahmad I, Akhtar MU, Noor S, et al. Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci Rep. 2020;10(1):364. https://doi.org/10.1038/s41598-019-57304-y.

    Article  Google Scholar 

  49. Davis DA, Chawla NV, Blumm N, Christakis N, Barabási A-L. Predicting individual disease risk based on medical history. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008:769–778.

  50. Rajeashwari S, Arunesh K. Chronic disease prediction with deep convolution based modified extreme-random forest classifier. Biomed Signal Process Control. 2024;87: 105425. https://doi.org/10.1016/j.bspc.2023.105425.

    Article  Google Scholar 

  51. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726. https://doi.org/10.1093/eurheartj/ehab368.

    Article  Google Scholar 

  52. Park H-M, Park S-Y, Chung JO, et al. Association between gastric emptying time and incidence of cardiovascular diseases in subjects with diabetes. J Neurogastroenterol Motil. 2019;25(3):387–93. https://doi.org/10.5056/jnm19037.

    Article  Google Scholar 

  53. Graham FJ, Masini G, Pellicori P, et al. Natural history and prognostic significance of iron deficiency and Anaemia in ambulatory patients with chronic heart failure. Eur Heart Fail. 2022;24(5):807–17. https://doi.org/10.1002/ejhf.2251.

    Article  Google Scholar 

  54. Alnuwaysir RIS, Grote BN, Hoes MF, et al. Additional burden of iron deficiency in heart failure patients beyond the cardio-renal anaemia syndrome: findings from the BIOSTAT-CHF study. Eur J Heart Fail. 2022;24(1):192–204. https://doi.org/10.1002/ejhf.2393.

    Article  Google Scholar 

  55. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305. https://doi.org/10.1056/NEJMoa041031.

    Article  Google Scholar 

  56. Mullens W, Damman K, Testani JM, et al. Evaluation of kidney function throughout the heart failure trajectory: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603. https://doi.org/10.1002/ejhf.1697.

    Article  Google Scholar 

  57. Gale SE, Mardis A, Plazak ME, et al. Management of noncardiovascular comorbidities in patients with heart failure with reduced ejection fraction. Pharmacotherapy. 2021;41(6):537–45. https://doi.org/10.1002/phar.2528.

    Article  Google Scholar 

  58. Imenez Silv PH, Unwin R, Hoorn EJ, Ortiz A, Trepiccione f, et al. Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease. Nephrol Dial Transpl. 2022;2:4–12.

    Google Scholar 

  59. Skelin M, Javor E, Lucijanić M, et al. The role of glucagon in the possible mechanism of cardiovascular mortality reduction in type 2 diabetes patients. Int J Clin Pract. 2018;72(12):13274. https://doi.org/10.1111/ijcp.13274.

    Article  Google Scholar 

  60. Mohiuddin MS, Himeno T, Yamada Y, et al. Glucagon prevents cytotoxicity induced by methylglyoxal in a rat neuronal cell line model. Biomolecules. 2021;11(2):287. https://doi.org/10.3390/biom11020287.

    Article  Google Scholar 

  61. Kedia N. Treatment of severe diabetic hypoglycemia with glucagon: an underutilized therapeutic approach. Diabetes Metab Syndr Obes. 2011;4:337. https://doi.org/10.2147/DMSO.S20633.

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 71771034), the Liaoning Province Applied Basic Research Program Project (Grant No. 2023JH2/101300208), and the Dalian High Level Talents Innovation Support Plan (Grant No. 2021RD01).

Author information

Authors and Affiliations

Authors

Contributions

Ye Liang: Conceptualization, Methodology, Software, Visualization, Writing—Original Draft. Chonghui Guo: Validation, Supervision, Writing—Review & Editing. Hailin Li: Writing—Review & Editing.

Corresponding author

Correspondence to Chonghui Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Guo, C. & Li, H. Comorbidity progression analysis: patient stratification and comorbidity prediction using temporal comorbidity network. Health Inf Sci Syst 12, 48 (2024). https://doi.org/10.1007/s13755-024-00307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-024-00307-5

Keywords