Skip to main content
Log in

Stepwise modeling with friction/inertia effects separation and velocity control with dynamic compensation of a reaction wheel

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Reaction wheels have been largely employed as primary actuators in attitude control systems to perform pointing functions in Earth observation satellites. Their dynamic behavior characterization and proper velocity control are relevant tasks in the scope of attitude control design. In this work, a given reaction wheel is evaluated. Firstly, a stepwise identification procedure is applied to obtain the dynamic model. Separated tests are proposed to highlight the contribution of friction and inertia forces in the underlying dynamics and to estimate their respective parameters. Then, this model is used in a design of a velocity control law for the reaction wheel. A structure with a model-based dynamic compensation, a proportional-integral (PI) feedback loop and a pre-filter is proposed to obtain smoother behavior in velocity reversals and tracking performance in a determined velocity range. A comparison between the proposed controller with the feedback PI control and pre-filter only shows a clear advantage of using the dynamic compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Bender F, Lampaert V, Swevers J (2005) The generalizaed Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans Autom Control 50(11):1883–1887

    Article  Google Scholar 

  • Altpeter F (1999) Friction modeling, identification and compensation. PhD dissertation, Ecole Politechnique Federal de Lausanne

  • Armstrong-Helouvry B (1990) Stick slip and control in low-speed motion. IEEE Trans Autom Control 38(10):1483–1496

    Article  MathSciNet  Google Scholar 

  • Armstrong-Hlouvry B, Dupont P, Canudas de Wit C (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138

    Article  Google Scholar 

  • Canudas-de-Wit C, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425

    Article  MathSciNet  Google Scholar 

  • Carrara V, Kuga HK (2013) Estimating friction parameters in reaction wheels for attitude control. Math Prob Eng 2013:1–8

    Article  MathSciNet  Google Scholar 

  • Carrara V, Silva AG, Kuga HK (2012) A dynamic friction model for reaction wheels. Adv Astronaut Sci 145:343–352

    Google Scholar 

  • Carrara V, Kuga HK (2015) Current and speed control operating modes of a reaction wheel. Appl Mech Mater 706:170–180

    Article  Google Scholar 

  • Dahl P (1968) A solid friction model. Technical Report TOR-0158(3107-18)-1, Aerospace Corporation, El Segundo, CA

  • Dupont P, Armstrong B, Hayward V (2000) Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference. Chicago, USA

  • Dupont P, Hayward V, Armstrong B, Altpeter F (2002) Single state elasto-plastic friction models. IEEE Trans Autom Control 47(5):787–792

    Article  Google Scholar 

  • Johnson CT (1992) Experimental identification of friction and its compensation in precise, position controlled machines. IEEE Trans Ind Appl 28(6):1392–1398

    Article  MathSciNet  Google Scholar 

  • Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. J Dyn Syst, Meas, Control 107(1):100–103

    Article  Google Scholar 

  • Rabinowicz E (1951) The nature of the static and kinetic coefficients of friction. J Appl Phys 22(11):1373–1379

    Article  Google Scholar 

  • Rabinowicz E (1958) The intrinsic variables affecting the stick-slip process. Proc Phys Soc 71(4):668–675

    Article  Google Scholar 

  • Richardson RSH, Noelle H (1976) Surface friction under time-dependent loads. Wear 37:87–101

    Article  Google Scholar 

  • Stribeck R (1902) Die wesentlischen eigenschaften fer gleit- und rollenlager (the key qualities of sliding and roller bearings). Zeitschrift des Vereins Deutscher Ingenieure 46(38):1342–1348

    Google Scholar 

  • Stribeck R (1902) Die wesentlischen eigenschaften fer gleit- und rollenlager (the key qualities of sliding and roller bearings). Zeitschrift des Vereins Deutscher Ingenieure 46(39):1432–1437

    Google Scholar 

  • Swevers J, Al-Bender F, Ganseman C, Prajogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45(4):675–686

    Article  MathSciNet  Google Scholar 

  • Vectronic Aerospace GmbH (2014) Description/manual interface control document of reaction wheel VRW-01

  • Walrath CD (1984) Adaptive bearing friction compensation based on recent knowledge of dynamic friction. Automatica 20(6):717–727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael A. M. Lopes.

Additional information

Communicated by Eduardo Souza de Cursi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, R.A.M., Carrara, V. & Kuga, H.K. Stepwise modeling with friction/inertia effects separation and velocity control with dynamic compensation of a reaction wheel. Comp. Appl. Math. 38, 20 (2019). https://doi.org/10.1007/s40314-019-0784-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0784-x

Keywords

Mathematics Subject Classification

Navigation