Skip to main content
Log in

Modified numerical approaches for a class of Volterra integral equations with proportional delays

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper addresses modified-meshless numerical schemes for dynamical systems with proportional delays. The proposed mesh reduction techniques are based on a redial-point interpolation and moving least-squares methods. An optimal influence domain radius is constructed utilizing nodal connectivity and node-depending integration background mesh. Optimal shape parameters are obtained by the use of properties of the delta Kronecker and the compactly supported weight function. Numerical results are provided to justify the accuracy and efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aczél J (1966) Lectures on functional equations and their applications, vol 19. Academic Press, New York

  • Aczél J, Eichhorn W (1974) Systems of functional equations determining price and productivity indices. Universität Karlsruhe, Institut für Wirtschaftstheorie und Operations Research

  • Alsina C, Bonnet E (1979) On some of dependent uniformly distributed random variables. Stochastica 5:33–43

    MATH  Google Scholar 

  • Arzani H, Kaveh A, Kaveh A, Taheri Taromsari M (2017) Optimum two-dimensional crack modeling in discrete least-squares meshless method by charged system search algorithm. Sci Iran 24(1):143–152 https://doi.org/10.24200/sci.2017.2384

    Article  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local petrov-galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  • Belinha J (2014) Lecture notes in computational vision and biomechanics. Springer, Berlin

    Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order caputo fractional functional differential equation. Nonlinear Dyn. 85(3):1815–1823

    Article  MathSciNet  MATH  Google Scholar 

  • Breitkopf P, Rassineux A, Savignat J-M, Villon P (2004) Integration constraint in diffuse element method. Comput Methods Appl Mech Eng 193(12–14):1203–1220

    Article  MATH  Google Scholar 

  • Brunner H (2001) Geometric meshes in collocation methods for volterra integral equations with proportional delays. IMA J Numer Anal 21(4):783–798

    Article  MathSciNet  MATH  Google Scholar 

  • Brunner H (2004) Collocation methods for volterra integral and related functional differential equations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Brunner H (2008) Collocation methods for pantograph-type volterra functional equations with multiple delays. Comput Methods Appl Math 8:207–222

    Article  MathSciNet  MATH  Google Scholar 

  • Brunner H, Xie H, Zhang R (2010) Analysis of collocation solutions for a class of functional equations with vanishing delays. IMA J Numer Anal 31(2):698–718

    Article  MathSciNet  MATH  Google Scholar 

  • Buhmann MD (2003) Radial Basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Butcher EA, Dabiri A, Nazari M et al (2017) Stability and control of fractional periodic time-delayed systems. In: Insperger T, Ersal T, Orosz G (eds) Time delay systems: theory, numerics, applications, and experiments, vol 7. Springer, New York

    Chapter  MATH  Google Scholar 

  • Castillo E, Iglesias A (1995) Some applications of functional equations to the characterization of families of surfaces. In: Proceedings of the first Peruvian Workshop on CAGD, CAGD’94’. Shaker Aachen, pp 153–169

  • Castillo E, Iglesias A, Ruiz-Cobo R (2004) Functional equations in applied sciences, vol 199. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Dabiri A, Butcher EA (2017) Fractional chebyshev collocation method for solving linear fractional-order delay-differential equations. In: ASME 2017 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers. V006T10A066-V006T10A066

  • Dabiri A, Butcher EA, Poursina M, Nazari M (2018) Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems. IEEE Trans Autom Control 63(4):989–1002

    Article  MathSciNet  MATH  Google Scholar 

  • Dabiri A, Nazari M, Butcher EA (2015) Explicit harmonic balance method for transition curve analysis of linear fractional periodic time-delayed systems. IFAC-PapersOnLine 48(12):39–44

    Article  Google Scholar 

  • Das P (1998) On oscillation of neutral delay differential equations. Nonlinear Anal Theory Methods Appl 32(4):533–539

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110

    Article  MathSciNet  MATH  Google Scholar 

  • Dinis LMJS, Jorge RMN, Belinha J (2011) The natural neighbour radial point interpolation meshless method applied to the non-linear analysis, Vol 196, pp 2009–2028

  • Doha EH, Youssri YH, Zaky MA (2018) Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials. Bull Iran Math Soc. https://doi.org/10.1007/s41980-018-0147-1

    Article  MATH  Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with Matlab. WORLD SCIENTIFIC

  • Gao YJ, Wang DH, Shi GP ( 2014) Meshless-finite element coupling method. In: Applied mechanics and materials, vol 441, Trans Tech Publ, pp 754–757

  • Iserles A (1993) On the generalized pantograph functional-differential equation. Eur J Appl Math 4(01):1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Ishiwata E, Muroya Y (2009) On collocation methods for delay differential and Volterra integral equations with proportional delay. Front Math China 4(1):89–111

    Article  MathSciNet  MATH  Google Scholar 

  • Karimi R, Dabiri A, Cheng J, Butcher EA ( 2018) Probabilistic-robust optimal control for uncertain linear time-delay systems by state feedback controllers with memory. In: American control conference (ACC)

  • Keshi FK, Moghaddam BP, Aghili A (2018) A numerical approach for solving a class of variable-order fractional functional integral equations. Comput Appl Math 37(4):4821–4834. https://doi.org/10.1007/s40314-018-0604-8

    Article  MathSciNet  MATH  Google Scholar 

  • Konuralp A, Sorkun HH (2014) Variational iteration method for Volterra functional integrodifferential equations with vanishing linear delays. J Appl Math 2014:1–10

    Article  MathSciNet  Google Scholar 

  • Lagrange J (2009) Mécanique Analytique. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lagrange JL (1804) Leçons sur le calcul des fonctions, vol 5, Imperiale

  • Li X (2015) Volterra integral equations with vanishing delay. Appl Comput Math 4(3):152

    Article  Google Scholar 

  • Liew KM, Chen XL (2004) Mesh-free radial point interpolation method for the buckling analysis of Mindlin plates subjected to in-plane point loads. Int J Numer Methods Eng 60(11):1861–1877

    Article  MATH  Google Scholar 

  • Liu G, Gu Y (2001) A local point interpolation method for stress analysis of two-dimensional solids. Struct Eng Mech 11(2):221–236

    Article  Google Scholar 

  • Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Machado JAT, Moghaddam BP (2018) A robust algorithm for nonlinear variable-order fractional control systems with delay. Int J Nonlinear Sci Numer Simul 19(3–4):1–8

    MathSciNet  Google Scholar 

  • Moghaddam BP, Mostaghim ZS (2014) A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng J 5(2):585–594

    Article  Google Scholar 

  • Moghaddam BP, Yaghoobi S, Machado JAT (2016) An extended predictor—corrector algorithm for variable-order fractional delay differential equations. J Comput Nonlinear Dyn 11(6):061001

    Article  Google Scholar 

  • Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  MATH  Google Scholar 

  • Oumri M, Rachid A (2016) A mathematical model for pantograph-catenary interaction. Math Comput Model Dyn Syst 22(5):463–474. https://doi.org/10.1080/13873954.2016.1195412

    Article  MathSciNet  MATH  Google Scholar 

  • Reutskiy S (2015) A new collocation method for approximate solution of the pantograph functional differential equations with proportional delay. Appl Math Comput 266:642–655

    MathSciNet  MATH  Google Scholar 

  • Taleei A, Dehghan M (2014) Direct meshless local Petrov—Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    Article  MathSciNet  MATH  Google Scholar 

  • Tayler AB (1986) Mathematical models in applied mechanics. Oxford University, Oxford

    MATH  Google Scholar 

  • Widatalla S, Koroma MA (2012) Approximation algorithm for a system of pantograph equations. J Appl Math 2012:1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao J, Hu Q (2013) Multilevel correction for collocation solutions of Volterra integral equations with proportional delays. Adv Comput Math 39(3–4):611–644

    Article  MathSciNet  MATH  Google Scholar 

  • Yaghoobi S, Moghaddam BP, Ivaz K (2016) An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn 87(2):815–826

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang K, Li J, Song H (2012) Collocation methods for nonlinear convolution volterra integral equations with multiple proportional delays. Appl Math Comput 218(22):10848–10860

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Taghizadeh.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, E., Matinfar, M. Modified numerical approaches for a class of Volterra integral equations with proportional delays. Comp. Appl. Math. 38, 63 (2019). https://doi.org/10.1007/s40314-019-0819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0819-3

Keywords

Mathematics Subject Classification

Navigation