Skip to main content
Log in

Numerical approximation to Prabhakar fractional Sturm–Liouville problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we treat a numerical scheme for the regular fractional Sturm–Liouville problem containing the Prabhakar fractional derivatives with the mixed boundary conditions. We show that the eigenfunctions corresponding to distinct numerical eigenvalues are orthogonal in the Hilbert spaces. The numerical errors and convergence rates are also investigated. Further, we consider a space-fractional diffusion equation and study the associated fractional Sturm–Liouville problem along with the convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Bassam MA, Luchko YF (1995) On generalized fractional calculus and its application to the solution of integro-differential equations. J Fract Calc 7:69–88

    MathSciNet  MATH  Google Scholar 

  • Al-Mdallal QA (2009) An efficient method for solving fractional Sturm-Liouville problems. Chaos Solitons Fractals 40(15):183–189

    Article  MathSciNet  MATH  Google Scholar 

  • An J, Van Hese E, Baes M (2012) Phase-space consistency of stellar dynamical models determined by separable augmented densities. Mon Not R Astron Soc 422(1):652–664

    Article  Google Scholar 

  • Ansari A (2015a) On finite fractional Sturm-Liouville transforms. Integral Transforms Spec Funct 26(1):51–64

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari A (2015b) Some inverse fractional Legendre transforms of gamma function form. Kodai Math J 38(3):658–671

    Article  MathSciNet  MATH  Google Scholar 

  • Askari H, Ansari A (2016) Fractional calculus of variations with a generalized fractional derivative. Fract Differ Calc 7(9):57–72

    Article  MathSciNet  MATH  Google Scholar 

  • Bas E, Metin F (2013) Fractional singular Sturm-Liouville operator for Coulomb potential. Adv Differ Equ. https://doi.org/10.1186/1687-1847-2013-300

    Article  MathSciNet  MATH  Google Scholar 

  • Bazhlekova E, Dimovski I (2013) Time-fractional Thornley’s problem. J Inequ Special Funct 4(1):21–35

    MathSciNet  MATH  Google Scholar 

  • Chamati H, Tonchev NS (2006) Generalized Mittag-Leffler functions in the theory of finite-size scaling for systems with strong anisotropy and/or long-range interaction. J Phys A: Math Gen 39:469–478

    Article  MathSciNet  MATH  Google Scholar 

  • Changpin L, Fanhai Z (2015) Numerical methods for fractional calculus. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Chaurasia VBL, Pandey SC (2010) On the fractional calculus of generalized Mittag-Leffler function. Sci Series A Math Sci 20:113–122

    MathSciNet  MATH  Google Scholar 

  • Ciesielski M, Klimek M, Blaszczyk T (2017) The fractional Sturm-Liouville problem-numerical approximation and application in fractional diffusion. J Comput Appl Math 317:573–588

    Article  MathSciNet  MATH  Google Scholar 

  • D’Ovidio M, Polito F (2018) Fractional diffusion-telegraph equations and their associated stochastic solutions. Theory Probab Appl 62(4):552–574

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath L, Bhatta D (2007) Integral transforms and their applications, 2nd edn. Chapman & Hall/CRC, Taylor & Francis Group, New York

    MATH  Google Scholar 

  • Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys 39:789–839

    Article  MATH  Google Scholar 

  • Derakhshan MH, Ansari A (2019) Fractional Sturm-Liouville problems for Weber fractional derivatives. Int J Comput Math 96(2):217–237

    Article  MathSciNet  Google Scholar 

  • Derakhshan MH, Ahmadi Darani M, Ansari A, Khoshsiar Ghaziani R (2016) On asymptotic stability of Prabhakar fractional differential systems. Comput Methods Differ Equ 4(4):276–284

    MathSciNet  MATH  Google Scholar 

  • Derakhshan MH, Ansari A, Ahmadi Darani M (2018) On asymptotic stability of Weber fractional differential systems. Comput Methods Differ Equ 6(1):30–39

    MathSciNet  MATH  Google Scholar 

  • Erturk VS (2011) Computing eigenelements of Sturm-Liouville problems of fractional order via fractional differential transform method. Math Comput Appl 16(3):712–720

    MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2015) Autoconvolution equations and generalized Mittag-Leffler functions. Int J Ind Math 7(4):335–341

    Google Scholar 

  • Eshaghi S, Ansari A (2016) Lyapunov inequality for fractional differential equations with Prabhakar derivative. Math Inequ Appl 19(1):349–358

    MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A (2017) Finite fractional Sturm-Liouville transforms for generalized fractional derivatives. Iran J Sci Technol 41(4):931–937

    Article  MathSciNet  MATH  Google Scholar 

  • Eshaghi S, Ansari A, Khoshsiar Ghaziani R (2018) Lyapunov-type inequalities for nonlinear systems with Prabhakar fractional derivatives. Acta Math Acad Paedagog Nyíregyházi (In press)

  • Eshaghi S, Khoshsiar Ghaziani R, Ansari A (2019) Stability and chaos control of regularized Prabhakar fractional dynamical systems without and with delay. Math Methods Appl Sci. https://doi.org/10.1002/mma.5509

    Article  MATH  Google Scholar 

  • Garra R, Garrappa R (2018) The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun Nonlinear Sci Numer Simul 56:314–329

    Article  MathSciNet  Google Scholar 

  • Garra R, Polito F (2013) On some operators involving Hadamard derivatives. Integr Transf Special Funct 24(10):773–782

    Article  MathSciNet  MATH  Google Scholar 

  • Garra R, Gorenflo R, Polito F, Tomovski Z (2014) Hilfer-Prabhakar derivatives and some applications. Appl Math Comput 242:576–589

    MathSciNet  MATH  Google Scholar 

  • Garrappa R (2015) Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J Numer Anal 53(3):1350–1369

    Article  MathSciNet  MATH  Google Scholar 

  • Garrappa R (2016) Grünwald-Letnikov operators for fractional relaxation in Havriliak- Negami models. Commun Nonlinear Sci Numer Simul 38:178–191

    Article  MathSciNet  Google Scholar 

  • Garrappa R, Mainardi F, Maione G (2016) Models of dielectric relaxation based on completely monotone functions. Fract Calc Appl Anal 19(5):1105–1160

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti A, Colombaro I (2018) Prabhakar-like fractional viscoelasticity. Commun Nonlinear Sci Numer Simul 56:138–143

    Article  MathSciNet  Google Scholar 

  • Gorenflo R, Kilbas AA, Rogosin SV (1998) On the generalized Mittag-Leffler type function. Integr Transforms Special Funct 7:215–224

    Article  MathSciNet  MATH  Google Scholar 

  • Górska K, Horzela A, Bratek L, Penson KA, Dattoli G (2016) The probability density function for the Havriliak-Negami relaxation. J Phys A Math Theor 51(13):135202

    Article  MATH  Google Scholar 

  • Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  Google Scholar 

  • Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Hilfer R, Luchko Y, Tomovski Z (2009) Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fract Calc Appl Anal 12:299–318

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr Transf Special Funct 15(1):31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Klimek M (2009) On solutions of a linear fractional differential equations of a variational type. The Publishing Office of the Czestochowa University of Technology, Czestochowa

    Google Scholar 

  • Klimek M (2015) Fractional Sturm-Liouville Problem and 1D space-time fractional diffusion with mixed boundary conditions. ASME/IEEE Int Design Eng Tech Conf Comput Inf Eng Conf 9:7

    Google Scholar 

  • Klimek M, Agrawal OP (2012) On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1). In: Proceedings of the 13th International Carpathian Control Conference, Vysoke Tatry (Podbanske), Slovakia, pp 28–31

  • Klimek M, Agrawal OP (2013) Fractional Sturm-Liouville problem. Comput Math Appl 66:795–812

    Article  MathSciNet  MATH  Google Scholar 

  • Klimek M, Odzijewicz T, Malinowska AB (2014) Variational methods for the fractional Sturm-Liouville problem. J Math Anal Appl 416:402–426

    Article  MathSciNet  MATH  Google Scholar 

  • Klimek M, Malinowska AB, Odzijewicz T (2016) Applications of the fractional Sturm-Liouville problem to the space-time fractional diffusion in finite domain. Fract Calc Appl Anal 19(2):516–550

    Article  MathSciNet  MATH  Google Scholar 

  • Klimek M, Ciesielski M, Blaszczyk T (2018) Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract Calc Appl Anal 21(1):45–71

    Article  MathSciNet  MATH  Google Scholar 

  • Liemert A, Sandev T, Kantz H (2017) Generalized Langevin equation with tempered memory kernel. Phys A 466:356–369

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Y, Yamamoto M (2016) General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract Calc Appl Anal 19(3):676–695

    Article  MathSciNet  MATH  Google Scholar 

  • Miskinis P (2009) The Havriliak-Negami susceptibility as a non-linear and non-local process. Phys Scr T136:014019

    Article  Google Scholar 

  • Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Pandey SC (2018) The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. Comput Appl Math 37(1):2648–2666

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Podlubny I (2000) Matrix approach to discrete fractional calculus. Fract Calc Appl Anal 3(4):359–386

    MathSciNet  MATH  Google Scholar 

  • Pogany TK, Tomovski Z (2016) Probability distribution built by Prabhakar function, Related Turán and Laguerre inequalities. Integr Transforms Special Funct 27(10):783–793

    Article  MATH  Google Scholar 

  • Polito F, Scalas E (2016) A generalization of the space fractional Poisson process and its connection to some Lévy processes. Electron Commun Prob 21:1–14

    Article  MATH  Google Scholar 

  • Polito F, Tomovski Z (2016) Some properties of Prabhakar-type fractional calculus operators. Fract Differ Calc 6(1):73–94

    Article  MathSciNet  MATH  Google Scholar 

  • Prabhakar TR (1971) A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama J Math 19:7–15

    MathSciNet  MATH  Google Scholar 

  • Reutskiy SY (2017) A new numerical method for solving high-order fractional eigenvalue problems. J Comput Appl Math 317:603–623

    Article  MathSciNet  MATH  Google Scholar 

  • Rivero M, Trujillo JJ, Velasco MP (2013) A fractional approach to the Sturm-Liouville problem. Cent Eur J Phys 11(10):1246–1254

    Google Scholar 

  • Sneddon IN (1979) The use of integral transforms. Mac Graw-Hill, New York

    MATH  Google Scholar 

  • Srivastava HM, Tomovski Z (2009) Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl Math Comput 211:198–210

    MathSciNet  MATH  Google Scholar 

  • Stanislavsky A, Weron K (2016) A typical case of the dielectric relaxation responses and its fractional kinetic equation. Fract Calc Appl Anal 19(1):212–228

    Article  MathSciNet  MATH  Google Scholar 

  • Tomovski Z, Hilfer R, Srivastava HM (2010) Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Fract Calc Appl Anal 21:797–814

    MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2013) Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J Comput Phys 252(1):495–517

    Article  MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2014a) Discontinuous spectral element methods for time and space-fractional advection equations. SIAM J Sci Comput 36(4):684–707

    Article  MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2014b) Exponentially accurate spectral and spectral element methods for fractional ODEs. J Comput Phys 257:460–480

    Article  MathSciNet  MATH  Google Scholar 

  • Zayernouri M, Karniadakis GE (2014c) Fractional spectral collocation method. SIAM J Sci Comput 36(1):40–62

    Article  MathSciNet  MATH  Google Scholar 

  • Zettl A (2005) Sturm-Liouville theory, mathematical surveys and monographs, Vol 121. American Mathematical Society, Providence

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the constructive comments which substantially helped improving the quality of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ansari.

Additional information

Communicated by Vasily E. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derakhshan, M.H., Ansari, A. Numerical approximation to Prabhakar fractional Sturm–Liouville problem. Comp. Appl. Math. 38, 71 (2019). https://doi.org/10.1007/s40314-019-0826-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0826-4

Keywords

Mathematics Subject Classification

Navigation