Skip to main content
Log in

Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Pure and applied Mathematics. Wiley, New York

    Book  Google Scholar 

  • Babuska IM, Tempone R, Zouraris GE (2005) Solving elliptic boundary value problems with uncertain coefficients by the finite element method the stochastic formulation. Comput Methods Appl Mech Eng 194(12–16):1251–1294

    Article  MathSciNet  Google Scholar 

  • Barrault M, Maday Y, Nguyen Ngoc Cuong, Patera Anthony T (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C R Acad Sci Paris Ser I 339:667–672

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Dakroub J, Mansour G, Sayah T (2015) A posteriori analysis of iterative algorithms for Navier–Stokes problem. ESAIM Math Modell Numer Anal. https://doi.org/10.1051/m2an/2015062

    Article  MATH  Google Scholar 

  • Bernardi C, Sayah T (2014) A posteriori error analysis of the time dependent Stokes equations with mixed boundary conditions. IMA J Numer Anal. https://doi.org/10.1093/imanum/drt067

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Süli E (2005) Time and space adaptivity for the second-order wave equation. Math Models Methods Appl Sci 15:199–225

    Article  MathSciNet  Google Scholar 

  • Bernardi C, Verfürth R (2004) A posteriori error analysis of the fully discretized time-dependent Stokes equations. Math Model Numer Anal 38:437–455

    Article  MathSciNet  Google Scholar 

  • Boyaval S (2008) Reduced-Basis approach for homogenization beyond the periodic setting. Multiscale Model Simul 1:466–494

    Article  MathSciNet  Google Scholar 

  • Boyaval S (2012) A fast Monte-Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation. CMAME 241–244:190–205

    MathSciNet  MATH  Google Scholar 

  • Chaillou A-L, Suri M (2006) Computable error estimators for the approximation of nonlinear problems by linearized models. Comput Methods Appl Mech Eng 196:210–224

    Article  MathSciNet  Google Scholar 

  • Chaillou A-L, Suri M (2007) A posteriori estimation of the linearization error for strongly monotone nonlinear operators. Comput Meth Appl Mec Eng 205:72–87

    MathSciNet  MATH  Google Scholar 

  • Chakir C, Maday Y (2009) Une mthode combine d’lments finis deux grilles/bases rduites pour l’approximation des solutions d’une E.D.P. paramtrique. Comptes Rendus Math 374:435–440

    Article  Google Scholar 

  • Ern A, Vohralik M (2013) Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAMJ Sci Comput 35(4):A1761–A1791

    Article  MathSciNet  Google Scholar 

  • El Alaoui M, Ern A, Vohralik M (2011) Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput Methods Appl Mech Eng 200:2782–2795

    Article  MathSciNet  Google Scholar 

  • Fink JP, Rheinboldt WC (2006) On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z Angew Math Mech 63(1):21–28

    Article  MathSciNet  Google Scholar 

  • Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math Model Numerl Anal 41:575–605

    Article  MathSciNet  Google Scholar 

  • Guignard D, Nobile F, Picasso M (2016) A posteriori error estimation for elliptic partial differential equations with small uncertainties. Numer Methods Partial Diff Equ 32(1):175–212

    Article  MathSciNet  Google Scholar 

  • Gunzburger MD, Webster CG, Zhang G (2014) Stochastic finite element methods for partial differential equations with random input data. EActa Numer 41:521–650

    Article  MathSciNet  Google Scholar 

  • Haasdonk B, Urban K, Wieland B (2013) Reduced basis metods for parametrized partial differential equations with stochastic influences using the Karhunen–Loeve expansion. SIAM JUQ 1:79–105

    Article  Google Scholar 

  • Hecht F (2012) New development in FreeFem++. J Numer Math 20:251–266

    Article  MathSciNet  Google Scholar 

  • Ladevze P (1998) Constitutive relation error estimators for time-dependent nonlinear FE analysis. Comput Methods Appl Mech Eng 188(4):775–788 (IV WCCM, Part II Buenos Aires, 1998)

    Article  Google Scholar 

  • Love M (1978) Probability theory II. Graduate texts in mathematics, vol 46, 4th edn. Springer, New York

    Google Scholar 

  • Maday Y, Patera AT, Turinici G (2002) Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C R Acad Sci Paris Ser I 335:289–294

    Article  MathSciNet  Google Scholar 

  • Noor AK, Peters JM (1980) Reduced basis technique for nonlinear analysis of structures. AIAA J 18(4):455–462

    Article  Google Scholar 

  • Prud’homme C, Rovas DV, Veroy K, Machiels L, Maday Y, Patera AT, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng Trans ASME 124(1):70–80

    Article  Google Scholar 

  • Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized partial differential equations and applications. J Math Ind 1(1):3

    Article  MathSciNet  Google Scholar 

  • Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15:229–275

    Article  MathSciNet  Google Scholar 

  • Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner Mathematics

  • Verfürth R (2003) A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40(3):195–212

    Article  MathSciNet  Google Scholar 

  • Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Numerical mathematics and scientific computation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Vidal-Codina F, Nguyen NC, Giles MB, Peraire J (2015) A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations. JCP 297:700–720

    Article  MathSciNet  Google Scholar 

  • Yano M (2015) A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM Math Model Numer Anal. https://doi.org/10.1051/m2an/2015039

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Sayah.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morcos, N., Sayah, T. Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem. Comp. Appl. Math. 38, 93 (2019). https://doi.org/10.1007/s40314-019-0859-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0859-8

Keywords

Mathematics Subject Classification