Skip to main content
Log in

Efficient radial basis functions approaches for solving a class of fractional optimal control problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The method of radial basis functions (RBFs) is a method of scattered data interpolation that has many applications in different fields. Based on the RBFs approach, two simple and accurate methods are presented in this paper to favor the solution of fractional optimal control problems (FOCPs) which are nominated as indirect and direct methods. In the first one, the considered FOCP is converted into a system of fractional differential equations (FDEs) that is called two-point boundary value problem (TPBVP) of fractional order. Then, both the context of minimization the total error and a joint application of Volterra integral equation will be used to rewrite this problems as as an unconstrained optimization problem that can be solved by using RBFs approximation. In direct one, we rewrite the FOCP as a classical static optimization problem that can be easily solved using known formulas for computing fractional derivatives of RBFs. Numerical example are given to prove the accuracy, effectiveness and feasibility of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal OP (2008) A quadratic numerical scheme for fractional optimal control problems. J Dyn Syst Meas Control 130(1):011010

    Google Scholar 

  • Agrawal OP, Baleanu D (2007) A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J Vib Control 13(9–10):1269–1281

    MathSciNet  MATH  Google Scholar 

  • Alizadeh A, Effati S (2016) An iterative approach for solving fractional optimal control problems. J Vib Control 24:18. https://doi.org/10.1177/1077546316633391

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Yu G (1998) Spectral methods and their applications. World Scientific, Singapore

    MATH  Google Scholar 

  • Bhrawy AH, Assas LM, Tohidi E, Alghamdi MA (2013) A Legendre–Gauss collocation method for neutral functional–differential equations with proportional delay. Adv Differ Equ. https://doi.org/10.1186/1687-1847-2013-63

  • Biazar J, Ghazvini H (2009) He’s homotopy perturbation method for solving system of Volterra integral equations of the second kind. Chaos Solitons Fractals 39:770–777

    MathSciNet  MATH  Google Scholar 

  • Blaszczyk T, Ciesielski M (2014) Numerical solution of fractional Sturm–Liouville equation in integral form. Fract Calc Appl Anal 17(2):307–320

    MathSciNet  MATH  Google Scholar 

  • Bohannan GW (2008) Analog fractional order controller in temperature and motor control applications. J Vib Control 14(9–10):1487–1498

    MathSciNet  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Caputo M (2008) Linear models of dissipation whose Q is almost frequency independent—II. Fract Calc Appl Anal 11(1):4–14

    MathSciNet  MATH  Google Scholar 

  • Ciarlet PG, Lions JL (1990) Handbook of numerical analysis, vol 1. North-Holland, New York, p 658

    Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2014) The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput Math Appl 68(3):212–237

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    MathSciNet  MATH  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional Adams method. Numer Algorithms 36(1):31–52

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH (2012) An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method. Comput Math Appl 64:558–571

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Ezz-Eldien SS (2011) Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl Math Model 35:5662–5672

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Baleanu D, Ezz-Eldien SS, Hafez RM (2015) An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems. Adv Differ Equ 2015:15

    MathSciNet  MATH  Google Scholar 

  • Elansari M, Ouazar D, Cheng AD (2001) Boundary solution of Poisson’s equation using radial basis function collocated on Gaussian quadrature nodes. Commun Numer Methods Eng 17(7):455–464

    MathSciNet  MATH  Google Scholar 

  • Elnagar GN, Kazemi M (1996) Chebyshev spectral solution of nonlinear Volterra–Hammerstein integral equations. J Comput Appl Math 76(1–2):147–158

    MathSciNet  MATH  Google Scholar 

  • Fasshauer G, McCourt M (2015) Kernel-based approximation methods using Matlab, vol 19. World Scientific Publishing Company

  • Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93(1):73–82

    MathSciNet  MATH  Google Scholar 

  • Gelfand IM, Fomin SV (1963) Calculus of variation (R.A. Silverman, Trans.). Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    MathSciNet  MATH  Google Scholar 

  • Kazemi BF, Ghoreishi F (2013) Error estimate in fractional differential equations using multiquadratic radial basis functions. J Comput Appl Math 245:133–147

    MathSciNet  MATH  Google Scholar 

  • Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam

    MATH  Google Scholar 

  • Larsson E, Fornberg B (2003) A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput Math Appl 46(5):891–902

    MathSciNet  MATH  Google Scholar 

  • Lotfi A, Dehghan M, Yousefi SA (2011) A numerical technique for solving fractional optimal control problems. Comput Math Appl 62(3):1055–1067

    MathSciNet  MATH  Google Scholar 

  • Lubich C (1983) On the stability of linear multistep methods for Volterra convolution equations. IMA J Numer Anal 3(4):439–465

    MathSciNet  MATH  Google Scholar 

  • Lubich C (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719

    MathSciNet  MATH  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publisher, Inc., Danbury

    Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  • Mokhtari R, Mohseni M (2012) A meshless method for solving mKdV equation. Comput Phys Commun 183(6):1259–1268

    MathSciNet  MATH  Google Scholar 

  • Mukherjee YX, Mukherjee S (1997) On boundary conditions in the element-free Galerkin method. Comput Mech 19(4):264–270

    MathSciNet  MATH  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, New York

    MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Pooseh S, Almeida R, Torres DF (2013a) Fractional order optimal control problems with free terminal time. arXiv preprint arXiv:1302.1717

  • Pooseh S, Almeida R, Torres DFM (2013b) A numerical scheme to solve fractional optimal control problems. In: Conference papers in mathematics, Article ID 165298, 10 Pages

  • Sahn N, Yzba S, Gulsu M (2011) A collocation approach for solving systems of linear Volterra integral equations with variable coefficients. Comput Math Appl 62(2):755–769

    MathSciNet  Google Scholar 

  • Sahu PK, Ray SS (2016) Comparison on wavelets techniques for solving fractional optimal control problems. J Vib Control 24:1185. https://doi.org/10.1177/1077546316659611

    Article  MathSciNet  MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  • Sanz-Serna JM (1988) A numerical method for a partial integro-differential equation. SIAM J Numer Anal 25(2):319–327

    MathSciNet  MATH  Google Scholar 

  • Schaback R (1995) Error estimates and condition numbers for radial basis function interpolation. Adv Comput Math 3:251–64

    MathSciNet  MATH  Google Scholar 

  • Schaback R (1999) Native Hilbert spaces for radial basis functions. I. New developments in approximation theory (Dortmund, 1998). Int Ser Numer Math 132:255–282

    MATH  Google Scholar 

  • Sweilam NH, Al-Ajami TM, Hoppe RH (2013) Numerical solution of some types of fractional optimal control problems. The Scientific World Journal, 2013

  • Tohidi E, Samadi ORN (2012) Optimal control of nonlinear Volterra integral equations via Legendre polynomials. IMA J Math Control Inf 30:67–83

    MathSciNet  MATH  Google Scholar 

  • Toutounian F, Tohidi E, Kilicman A (2013) Fourier operational matrices of differentiation and transmission: introduction and applications. Abstr Appl Anal 2013:1–11

    MathSciNet  MATH  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–96

    MathSciNet  MATH  Google Scholar 

  • Wendland H (1999) Meshless Galerkin method using radial basis functions. Math Comput 68:1521–31

    MathSciNet  MATH  Google Scholar 

  • Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  • Wu ZM, Schaback R (1993) Local error estimates for radial basis function interpolation of scattered data. IMA J Numer Anal 13:13–27

    MathSciNet  MATH  Google Scholar 

  • Yoon J (2003) \( L_p \)-error estimates for shifted surface spline interpolation on Sobolev space. Math Comput 72(243):1349–1367

    MATH  Google Scholar 

  • Zamani AA, Tavakoli S, Etedali S (2017) Fractional order PID control design for semi-active control of smart base-isolated structures: a multi-objective cuckoo search approach. ISA Trans 67:222–232

    Google Scholar 

  • Zeid SS, Yousefi M (2016) Approximated solutions of linear quadratic fractional optimal control problems. J Appl Math 12:83–94

    MathSciNet  MATH  Google Scholar 

  • Zeid SS, Kamyad AV, Effati S, Rakhshan SA, Hosseinpour S (2017) Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach. SeMA J 74(4):585–603

    MathSciNet  MATH  Google Scholar 

  • Zeid SS, Effati S, Kamyad AV (2018) Approximation methods for solving fractional optimal control problems. Comput Appl Math 37(1):158–182

    MathSciNet  MATH  Google Scholar 

  • Zhang X, Liu X, Lu MW, Chen Y (2001) Imposition of essential boundary conditions by displacement constraint equations in meshless methods. Commun Numer Methods Eng 17(3):165–178

    MATH  Google Scholar 

  • Zongmin W (1992) Hermite–Birkhoff interpolation of scattered data by radial basis functions. Approx Theory Appl 8(2):1–10

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Soradi-Zeid.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soradi-Zeid, S. Efficient radial basis functions approaches for solving a class of fractional optimal control problems. Comp. Appl. Math. 39, 20 (2020). https://doi.org/10.1007/s40314-019-1003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-1003-5

Keywords

Mathematics Subject Classification

Navigation