Skip to main content
Log in

Jacobian-dependent vs Jacobian-free discretizations for nonlinear differential problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The paper provides a comparison between two relevant classes of numerical discretizations for stiff and nonstiff problems. Such a comparison regards linearly implicit Jacobian-dependent Runge–Kutta methods and fully implicit Runge–Kutta methods based on Gauss–Legendre nodes, both A-stable. We show that Jacobian-dependent discretizations are more efficient than Jacobian-free fully implicit methods, as visible in the numerical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulle A, Medovikov AA (2001) Second order Chebyshev methods based on orthogonal polynomials. Numer Math 90(1):1–18

    MathSciNet  MATH  Google Scholar 

  • Bocher P, Montijano JI, Rández L, Van Daele M (2018) Explicit Runge–Kutta methods for stiff problems with a gap in their eigenvalue spectrum. J Sci Comput 77(2):1055–1083

    MathSciNet  MATH  Google Scholar 

  • Burrage K, Cardone A, D’Ambrosio R, Paternoster B (2017) Numerical solution of time fractional diffusion systems. Appl Numer Math 116:82–94

    MathSciNet  MATH  Google Scholar 

  • Butcher JC (2016) Numerical methods for ordinary differential equations, 3rd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Cardone A, Conte D, Paternoster B (2009) A family of multistep collocation methods for volterra integro-differential equations. AIP Conf Proc 1168:358–361

    MATH  Google Scholar 

  • Cardone A, D’Ambrosio R, Paternoster B (2017) Exponentially fitted IMEX methods for advection–diffusion problems. J Comput Appl Math 316:100–108

    MathSciNet  MATH  Google Scholar 

  • Cardone A, D’Ambrosio R, Paternoster B (2017) High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl Numer Math 114C:18–29

    MathSciNet  MATH  Google Scholar 

  • Cardone A, Conte D, Paternoster B (2018) Two-step collocation methods for fractional differential equations. Discr Cont Dyn Syst B 23(7):2709–2725

    MathSciNet  MATH  Google Scholar 

  • Cardone A, D’Ambrosio R, Paternoster B (2019) A spectral method for stochastic fractional differential equations. Appl Numer Math 139:115–119

    MathSciNet  MATH  Google Scholar 

  • Chen C, Cohen D, D’Ambrosio R, Lang A (2020) Drift-preserving numerical integrators for stochastic Hamiltonian systems. Adv Comput Math 46(2):27

  • Citro V, D’Ambrosio R (2020) Long-term analysis of stochastic \(\theta \)-methods for damped stochastic oscillators. Appl Numer Math 150:18–26

    MathSciNet  MATH  Google Scholar 

  • Citro V, D’Ambrosio R, Di Giovacchino S (2020) A-stability preserving perturbation of Runge–Kutta methods for stochastic differential equations. Appl Math Lett 102:106098

    MathSciNet  MATH  Google Scholar 

  • Conte D, Califano G (2018) Optimal Schwarz Waveform Relaxation for fractional diffusion-wave equations. Appl Numer Math 127:125–141

    MathSciNet  MATH  Google Scholar 

  • Conte D, Paternoster B (2016) Modified Gauss–Laguerre exponential fitting based formulae. J Sci Comput 69(1):227–243

    MathSciNet  MATH  Google Scholar 

  • Conte D, Esposito E, Gr L, Ixaru B (2010) Paternoster, Some new uses of the \(\eta _m(Z)\) functions. Comput Phys Commun 181:128–137

    MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Jackiewicz Z, Paternoster B (2013) Numerical search for algebraically stable two-step almost collocation methods. J Comput Appl Math 239(1):304–321

    MathSciNet  MATH  Google Scholar 

  • Conte D, Ixaru L, Gr L, Paternoster B, Santomauro G (2014) Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval. J Comput Appl Math 255:725–736

    MathSciNet  MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Paternoster B (2016) GPU acceleration of waveform relaxation methods for large differential systems. Numer Algor 71(2):293–310

    MathSciNet  MATH  Google Scholar 

  • Conte D, Capobianco G, Paternoster B (2017) Construction and implementation of two-step continuous methods for Volterra Integral Equations. Appl Numer Math 119:239–247

    MathSciNet  MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Paternoster B (2018) On the stability of \(\vartheta \)-methods for stochastic Volterra integral equations. Discr Cont Dyn Syst Ser B 23(7):2695–2708

    MathSciNet  MATH  Google Scholar 

  • Conte D, D’Ambrosio R, Moccaldi M, Paternoster B (2019) Adapted explicit two-step peer methods. J Numer Math 27(2):69–83

  • Conte D, Mohammadi F, Moradi L, Paternoster B (2020) Exponentially fitted two-step peer methods for oscillatory problems. Comput Appl Math. https://doi.org/10.1007/s40314-020-01202-x

  • D’Ambrosio R, Hairer E (2014) Long-term stability of multi-value methods for ordinary differential equations. J Sci Comput 60(3):627–640

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Paternoster B (2014) Numerical solution of a diffusion problem by exponentially fitted finite difference methods. SpringerPlus 3(1):425–431

    Google Scholar 

  • D’Ambrosio R, Paternoster B (2014) Exponentially fitted singly diagonally implicit Runge–Kutta methods. J Comput Appl Math 263:277–287

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Paternoster B (2015) A general framework for numerical methods solving second order differential problems. Math Comput Simul 110(1):113–124

    Google Scholar 

  • D’Ambrosio R, Paternoster B (2016) Numerical solution of reaction–diffusion systems of \(\lambda -\omega \) type by trigonometrically fitted methods. J Comput Appl Math 294:436–445

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Gr L, Ixaru L, Paternoster B (2011) Construction of the EF-based Runge-Kutta methods revisited. Comput Phys Commun 182:322–329

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, De Martino G, Paternoster B (2014) Numerical integration of Hamiltonian problems by G-symplectic methods. Adv Comput Math 40(2):553–575

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, De Martino G, Paternoster B (2014) Order conditions of general Nyström methods. Numer.Algor 65(3):579–595

    MATH  Google Scholar 

  • D’Ambrosio R, Paternoster B, Santomauro G (2014) Revised exponentially fitted Runge–Kutta–Nyström methods. Appl Math Lett 30:56–60

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Moccaldi M, Paternoster B (2017) Adapted numerical methods for advection–reaction–diffusion problems generating periodic wavefronts. Comput Appl Math 74(5):1029–1042

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Moccaldi M, Paternoster B, Rossi F (2018) Adapted numerical modelling of the Belousov–Zhabotinsky reaction. J Math Chem 56(10):2867–2897

    MathSciNet  MATH  Google Scholar 

  • D’Ambrosio R, Moccaldi M, Paternoster B (2018) Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems. Comp Phys Commun 226:55–66

    MathSciNet  Google Scholar 

  • D’Ambrosio R, Moccaldi M, Paternoster B (2018) Numerical preservation of long-term dynamics by stochastic two-step methods. Discr Cont Dyn Syst Ser B 23(7):2763–2773

    MathSciNet  MATH  Google Scholar 

  • Hairer E, Wanner G (2002) Solving ordinary differential equations ii—stiff and differential—algebraic problems. Springer, Berlin

    MATH  Google Scholar 

  • Hairer E, Nørsett S, Wanner G (1987) Solving ordinary differential equations I. Non-stiff problems. Springer, Berlin

    MATH  Google Scholar 

  • Isaacson E, Keller HB (1994) Analysis of numerical methods. Dover Publications, New York

    MATH  Google Scholar 

  • Ixaru L Gr (2012) Runge–Kutta method with equation dependent coefficients. Comput Phys Commun 183(1):63–69

  • Ixaru L Gr (2013) Runge–Kutta methods with equation dependent coefficients. Lect Notes Comput Sci 8236:327–336

  • Ixaru L Gr (2013) Runge–Kutta methods of special form. J Phys Conf Ser 413(1) Article number 012033

  • Ixaru L Gr (2019) Exponential and trigonometrical fittings: user-friendly expressions for the coefficients. Numer Algorithms 82:1085–1096

  • Ixaru L Gr, Vanden Berghe G (2004) Exponential Fitting. Kluwer, Boston, Dordrecht, London

  • Martán-Vaquero J, Janssen B (2009) Second-order stabilized explicit Runge–Kutta methods for stiff problems. Comput Phys Commun 180(10):1802–1810

    MathSciNet  MATH  Google Scholar 

  • Martán-Vaquero J, Vigo-Aguiar J (2008) Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer Algorithms 48(4):327–346

    MathSciNet  MATH  Google Scholar 

  • Ozawa K (2001) A functional fitting Runge–Kutta method with variable coefficients. Jpn J Ind Appl Math 18(1):107–130

    MathSciNet  MATH  Google Scholar 

  • Paternoster B (2012) Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary. Comput Phys Commun 183:2499–2512

    MathSciNet  MATH  Google Scholar 

  • Schiesser WE (1991) The numerical method of lines: integration of partial differential equations. Academic Press, Cambridge

    MATH  Google Scholar 

  • Schiesser WE, Griffiths GW (2009) A compendium of partial differential equation models: method of lines analysis with matlab. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Smith GD (1985) Numerical solution of partial differential equations—finite difference methods. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

The authors Conte, D’Ambrosio and Paternoster are members of the GNCS group. This work is supported by GNCS-INDAM project and by PRIN2017-MIUR project. The authors thank Prof. Liviu Gr. Ixaru for the precious discussions that inspired this research. The authors are thankful to the anonymous referees for their gifted suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele D’Ambrosio.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, D., D’Ambrosio, R., Pagano, G. et al. Jacobian-dependent vs Jacobian-free discretizations for nonlinear differential problems. Comp. Appl. Math. 39, 171 (2020). https://doi.org/10.1007/s40314-020-01200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01200-z

Keywords

Mathematics Subject Classification

Navigation