Skip to main content
Log in

Analytical bending solutions of thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The finite integral transform method is developed to explore the bending analysis of thin plates with the combination of simply supported, clamped, and free boundary conditions. Previous solutions mostly focused on simply supported and clamped boundary conditions, but the existence of free boundary conditions makes the solving process more complex, because it is difficult to find the exact solution which satisfies both deflection and internal force by conventional inverse/semi-inverse method or approximate method. Using this method, the plate high-order partial differential equation is simplified to a linear algebraic equation by the integral transformation. Then, through some mathematical manipulation, the analytical solution is elegantly achieved in a straightforward procedure. Compared with other methods, the present method is much simpler and general and does not need to pre-determine the deflection function, which makes it very attractive for calculating the mechanical responses of the plates. Comprehensive analytical results obtained in this paper illuminate the validity of the proposed method by comparison with the existing literature and finite-element method using (ABAQUS) software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bidgoli AMM, Daneshmehr AR, Kolahchi R (2015) Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method. J Appl Comput Mech. https://doi.org/10.22055/jacm.2014.10742

    Article  Google Scholar 

  • Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462

    Article  MathSciNet  Google Scholar 

  • Civalek Ö (2004) Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186

    Article  Google Scholar 

  • Civalek Ö (2007) Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int J Mech Sci 49:752–765

    Article  Google Scholar 

  • Civalek Ö, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessels Pip 84:527–535

    Article  Google Scholar 

  • Civalek O, Emsen E (2009) Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation. Steel Composite Struct 9:59–75

    Article  Google Scholar 

  • Civalek Ö, Ersoy H (2009) Free vibration and bending analysis of circular Mindlin plates using singular convolution method. Commun Numer Methods Eng 25:907–922

    Article  MathSciNet  Google Scholar 

  • Civalek O, Ülker M (2004) Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates. Struct Eng Mech 17:1–14

    Article  Google Scholar 

  • LIM CW. Symplectic elasticity approach for free vibration of rectangular plates. In: International conference on vibration engineering & technology of machinery (VETOMAC IV), 2007.

  • Fo-van C (1981) Rectangular plates with two adjacent edges clamped and other two adjacent edges free. Acta Mech Solida Sin 4:491–502

    Google Scholar 

  • Fu Z, Chen W, Yang W (2009) Winkler plate bending problems by a truly boundary-only boundary particle method. Comput Mech 44:757–763

    Article  MathSciNet  Google Scholar 

  • Huang MK, Conway HD (1952) Bending of a uniformly loaded rectangular plate with 2 adjacent edges clamped and the others either simply supported or free. J Appl Mech Trans ASME 19:451–460

    MathSciNet  MATH  Google Scholar 

  • Jafari N, Azhari M (2017) Bending analysis of moderately thick arbitrarily shaped plates with point supports using simple Hp cloud method. Iranian J Sci Tech Trans Civ Eng 41:361–371

    Article  Google Scholar 

  • Karimi M, Shahidi AR (2017) Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects. Proc Inst Mech Eng Part N 231:111–130

    Google Scholar 

  • Leissa AW, Niedenfuhr FW (1963) Bending of a square plate with two adjacent edges free and the others clamped or simply supported. AIAA Journal 1:116–120

    Article  Google Scholar 

  • Li T, Kapania RK (2018) On the formulation of a high-order discontinuous finite element method based on orthogonal polynomials for laminated plate structures. Int J Mech Sci 149:530–548

    Article  Google Scholar 

  • Li R, Wang P, Tian Y, Wang B, Li G. A unified analytic solution approach to static bending and free vibration problems of rectangular thin plates. Sci Rep 2015;5. doi: 10.1038/srep17054.

  • Li R, Zhong Y, Tian B, Liu Y (2009) On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl Math Lett 22:1821–1827. https://doi.org/10.1016/j.aml.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  • Li R, Tian B, Zhong Y (2013) Analytical bending solutions of free orthotropic rectangular thin plates under arbitrary loading. Meccanica 48:2497–2510

    Article  MathSciNet  Google Scholar 

  • Li R, Wang B, Li P (2014) Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported. Int J Mech Sci 85:212–218

    Article  Google Scholar 

  • Li R, Tian Y, Wang P, Shi Y, Wang B (2016) New analytic free vibration solutions of rectangular thin plates resting on multiple point supports. Int J Mech Sci 110:53–61

    Article  Google Scholar 

  • Li R, Wang P, Xue R, Guo X (2017) New analytic solutions for free vibration of rectangular thick plates with an edge free. Int J Mech Sci 131:179–190

    Article  Google Scholar 

  • Li R, Zheng X, Wang H, Xiong S, Yan K, Li P (2018) New analytic buckling solutions of rectangular thin plates with all edges free. Int J Mech Sci 144:67–73. https://doi.org/10.1016/j.ijmecsci.2018.05.041

    Article  Google Scholar 

  • Lim CW, Xu XS (2010) Symplectic elasticity: theory and applications. Appl Mech Rev 63:050802. https://doi.org/10.1115/1.4003700

    Article  Google Scholar 

  • Lim CW, Yao WA, Cui S (2008) Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. IES J Part A 1:106–115

    Google Scholar 

  • Lim CW, Lü CF, Xiang Y, Yao W (2009) On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int J Eng Sci 47:131–140

    Article  MathSciNet  Google Scholar 

  • Liu Y, Li R (2010) Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach. Appl Math Model 34:856–865. https://doi.org/10.1016/j.apm.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  • Paiva JB (2018) Corner restrictions and their application to bending plate analyses by the boundary element method. Eng Anal Boundary Elem 95:1–11

    Article  MathSciNet  Google Scholar 

  • Pavan GS, Rao KN (2017) Bending analysis of laminated composite plates using isogeometric collocation method. Compos Struct 176:715–728

    Article  Google Scholar 

  • Sator L, Sladek V, Sladek J (2018) Bending of FGM plates under thermal load: classical thermoelasticity analysis by a meshless method. Compos B Eng 146:176–188

    Article  Google Scholar 

  • Shen P, He P (1995) Bending analysis of rectangular moderately thick plates using spline finite element method. Comput Struct 54:1023–1029

    Article  Google Scholar 

  • Simulia DS. Abaqus 6.13 Analysis User’s Guide. Dassault Systems, Providence, RI 2013.

  • Sneddon IN (1975) Application of integral transforms in the theory of elasticity, vol 33. Springer-Verlag, New York

    MATH  Google Scholar 

  • Thai H-T, Choi D-H (2014) Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory. KSCE J Civ Eng 18:1813–1824

    Article  Google Scholar 

  • Thai H-T, Kim S-E (2011) Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory. Compos Struct 93:1738–1746

    Article  Google Scholar 

  • Thai H-T, Kim S-E (2012a) Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int J Mech Sci 54:269–276

    Article  Google Scholar 

  • Thai H-T, Kim S-E (2012b) Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory. Appl Math Model 36:3870–3882. https://doi.org/10.1016/j.apm.2011.11.003

    Article  MathSciNet  MATH  Google Scholar 

  • Tian B, Zhong Y, Li R (2011) Analytic bending solutions of rectangular cantilever thin plates. Arch Civ Mech Eng 11:1043–1052

    Article  Google Scholar 

  • Tian B, Li R, Zhong Y (2015) Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations. Appl Math Model 39:128–136

    Article  MathSciNet  Google Scholar 

  • Timonin AM (2016) Finite-layer method: bending and twisting of laminated plates with delaminations. Mech Compos Mater 52:55–72

    Article  Google Scholar 

  • Timoshenko SP, Gere JM. Theory of elastic stability. 1961. McGrawHill-Kogakusha Ltd, Tokyo 1961;109

  • Wang B, Li P, Li R (2016) Symplectic superposition method for new analytic buckling solutions of rectangular thin plates. Int J Mech Sci 119:432–441. https://doi.org/10.1016/j.ijmecsci.2016.11.006

    Article  Google Scholar 

  • Wheel MA (1997) A finite volume method for analysing the bending deformation of thick and thin plates. Comput Methods Appl Mech Eng 147:199–208

    Article  Google Scholar 

  • Zheng X, Sun Y, Huang M, An D, Li P, Wang B et al (2019) Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels. Int J Mech Sci 152:432–442

    Article  Google Scholar 

  • Zhong Y, Yin J-H (2008) Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method. Mech Res Commun 35:268–275

    Article  Google Scholar 

  • Zhong Y, Zhang YS (2006) Free vibration of rectangular thin plate on elastic foundation with four edges free. J Vibration Eng 19:566–570

    Google Scholar 

  • Zhong Y, Zhao X-F, Li R (2013) Free vibration analysis of rectangular cantilever plates by finite integral transform method. Int J Comput Methods Eng Sci Mech 14:221–226. https://doi.org/10.1080/15502287.2012.711424

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work reported in this paper is supported by the Youth Fund of Colleges and Universities in Hebei Province Science and Technology Research Project (Grant No. QN2019024)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salamat Ullah.

Additional information

Communicated by Apala Majumdar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: detailed derivation for the transformation of each term in Eq. (1).

Appendix: detailed derivation for the transformation of each term in Eq. (1).

$$ \begin{gathered} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{4} W}}{{\partial x^{4} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}}x{\text{d}} y{\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{b} {\sin \frac{{\beta_{n} y}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{3} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\int_{0}^{a} {\frac{{\partial^{3} W}}{{\partial x^{3} }}\cos \frac{{\alpha_{m} x}}{2}{\text{d}}x} } \right]} {\text{d}} y \hfill \\ = \int_{0}^{b} {\sin \frac{{\beta_{n} y}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{3} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial x^{2} }}\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \int_{0}^{a} {\frac{{\partial^{2} W}}{{\partial x^{2} }}\sin \frac{{\alpha_{m} x}}{2}{\text{d}}x} } \right]} {\text{d}} y \hfill \\ = \int_{0}^{b} {\sin \frac{{\beta_{n} y}}{2}\left[ \begin{gathered} \left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{3} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial x^{2} }}\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} \hfill \\ - \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left. {\left( {\frac{\partial W}{{\partial x}}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} + \left( {\frac{{\alpha_{m} }}{2}} \right)^{3} \int_{0}^{a} {\frac{\partial W}{{\partial x}}\cos \frac{{\alpha_{m} x}}{2}{\text{d}}x} \hfill \\ \end{gathered} \right]} {\text{d}} y \hfill \\ = \int_{0}^{b} {\left[ \begin{gathered} \left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{3} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial x^{2} }}\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} \hfill \\ - \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left. {\left( {\frac{\partial W}{{\partial x}}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} + \left. {\left( {\frac{{\alpha_{m} }}{2}} \right)^{3} \left( {W\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} \hfill \\ \end{gathered} \right]\sin \frac{{\beta_{n} y}}{2}} {\text{d}} y \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \left( {\frac{{\alpha_{m} }}{2}} \right)^{4} \int_{0}^{a} {\int_{0}^{b} {W\sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}} } {\text{d}}x{\text{d}} y \hfill \\ = \left( {\frac{{\alpha_{m} }}{2}} \right)^{4} W_{mn} + \int_{0}^{b} {\left[ \begin{gathered} \left( { - 1} \right)^{{\frac{m - 1}{2}}} \left. {\frac{{\partial^{3} W}}{{\partial x^{3} }}} \right|_{x = a} + \left. {\frac{{\alpha_{m} }}{2}\frac{{\partial^{2} W}}{{\partial x^{2} }}} \right|_{x = 0} \hfill \\ - \left. {\left( { - 1} \right)^{{\frac{m - 1}{2}}} \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \frac{\partial W}{{\partial x}}} \right|_{x = a} - \left. {\left( {\frac{{\alpha_{m} }}{2}} \right)^{3} W} \right|_{x = 0} \hfill \\ \end{gathered} \right]} \sin \frac{{\beta_{n} y}}{2}{\text{d}} y, \hfill \\ \end{gathered} $$
$$ \begin{gathered} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{4} W}}{{\partial y^{4} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}}x{\text{d}} y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\sin \frac{{\alpha_{m} x}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial y^{3} }}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\int_{0}^{b} {\frac{{\partial^{3} W}}{{\partial y^{3} }}\cos \frac{{\beta_{n} y}}{2}{\text{d}} y} } \right]} {\text{d}}x{\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\sin \frac{{\alpha_{m} x}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial y^{3} }}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial y^{2} }}\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{b} {\frac{{\partial^{2} W}}{{\partial y^{2} }}\sin \frac{{\beta_{n} y}}{2}{\text{d}} y} } \right]} {\text{d}}x{\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\sin \frac{{\alpha_{m} x}}{2}\left[ \begin{gathered} \left. {\left( {\frac{{\partial^{3} W}}{{\partial y^{3} }}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial y^{2} }}\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} \hfill \\ - \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \left. {\left( {\frac{\partial W}{{\partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} + \left( {\frac{{\beta_{n} }}{2}} \right)^{3} \int_{0}^{b} {\frac{\partial W}{{\partial y}}\cos \frac{{\beta_{n} y}}{2}{\text{d}} y} \hfill \\ \end{gathered} \right]} {\text{d}}x{\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\left[ \begin{gathered} \left. {\left( {\frac{{\partial^{3} W}}{{\partial y^{3} }}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial y^{2} }}\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} \hfill \\ - \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \left. {\left( {\frac{\partial W}{{\partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} + \left( {\frac{{\beta_{n} }}{2}} \right)^{3} \left. {\left( {W\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} \hfill \\ \end{gathered} \right]\sin \frac{{\alpha_{m} x}}{2}} {\text{d}}x \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \left( {\frac{{\beta_{n} }}{2}} \right)^{4} \int_{0}^{a} {\int_{0}^{b} W } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}}x{\text{d}} y \hfill \\ = \left( {\frac{{\beta_{n} }}{2}} \right)^{4} W_{mn} + \int_{0}^{a} {\left[ \begin{gathered} \left( { - 1} \right)^{{\frac{n - 1}{2}}} \left. {\frac{{\partial^{3} W}}{{\partial y^{3} }}} \right|_{y = b} + \frac{{\beta_{n} }}{2}\left. {\frac{{\partial^{2} W}}{{\partial y^{2} }}} \right|_{y = 0} \hfill \\ - \left( { - 1} \right)^{{\frac{n - 1}{2}}} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \left. {\frac{\partial W}{{\partial y}}} \right|_{y = b} - \left. {\left( {\frac{{\beta_{n} }}{2}} \right)^{3} W} \right|_{y = 0} \hfill \\ \end{gathered} \right]} \sin \frac{{\alpha_{m} x}}{2}{\text{d}} x. \hfill \\ \end{gathered} $$

Integration by parts on \(\frac{{\partial^{4} W}}{{\partial x^{2} \partial y^{2} }}\) with considering the x variable first:

$$ \begin{gathered} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{4} W}}{{\partial x^{2} \partial y^{2} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y{\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{b} {\sin \frac{{\beta_{n} y}}{2}} \left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x\partial y^{2} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\int_{0}^{a} {\frac{{\partial^{3} W}}{{\partial x\partial y^{2} }}\cos \frac{{\alpha_{m} x}}{2}{\text{d}} x} } \right]{\text{d}} y{\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{b} {\sin \frac{{\beta_{n} y}}{2}} \left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x\partial y^{2} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial y^{2} }}\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} } \right]{\text{d}} y \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} W}}{{\partial y^{2} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y{\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{b} {\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x\partial y^{2} }}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \frac{{\alpha_{m} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial y^{2} }}\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} } \right]} \sin \frac{{\beta_{n} y}}{2}{\text{d}} y \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \int_{0}^{a} {\left[ {\left. {\left( {\frac{\partial W}{{\partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \left. {\frac{{\beta_{n} }}{2}\left( {W\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} } \right]} \sin \frac{{\alpha_{m} x}}{2}{\text{d}} x \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{a} {\int_{0}^{b} W } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y \hfill \\ = \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} W_{mn} + \int_{0}^{b} {\left[ {\left( { - 1} \right)^{{\frac{m - 1}{2}}} \left. {\frac{{\partial^{3} W}}{{\partial x\partial y^{2} }}} \right|_{x = a} + \frac{{\alpha_{m} }}{2}\left. {\frac{{\partial^{2} W}}{{\partial y^{2} }}} \right|_{x = 0} } \right]} \sin \frac{{\beta_{n} y}}{2}{\text{d}} y \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \int_{0}^{a} {\left[ {\left( { - 1} \right)^{{\frac{n - 1}{2}}} \left. {\frac{\partial W}{{\partial y}}} \right|_{y = b} + \left. {\frac{{\beta_{n} }}{2}W} \right|_{y = 0} } \right]} \sin \frac{{\alpha_{m} x}}{2}{\text{d}} x. \hfill \\ \end{gathered} $$

Integration by parts on \(\frac{{\partial^{4} W}}{{\partial x^{2} \partial y^{2} }}\) with considering the y variable first:

$$ \begin{gathered} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{4} W}}{{\partial x^{2} \partial y^{2} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\sin \frac{{\alpha_{m} x}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{2} \partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\int_{0}^{b} {\frac{{\partial^{3} W}}{{\partial x^{2} \partial y}}\cos \frac{{\beta_{n} y}}{2}{\text{d}} y} } \right]} {\kern 1pt} {\text{d}} x{\kern 1pt} {\kern 1pt} \hfill \\ = \int_{0}^{a} {\sin \frac{{\alpha_{m} x}}{2}\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{2} \partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial x^{2} }}\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} } \right]} {\kern 1pt} {\text{d}} x \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\kern 1pt} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} W}}{{\partial x^{2} }}} } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y{\kern 1pt} \hfill \\ = \int_{0}^{a} {\left[ {\left. {\left( {\frac{{\partial^{3} W}}{{\partial x^{2} \partial y}}\sin \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} - \frac{{\beta_{n} }}{2}\left. {\left( {\frac{{\partial^{2} W}}{{\partial x^{2} }}\cos \frac{{\beta_{n} y}}{2}} \right)} \right|_{y = 0}^{y = b} } \right]} \sin \frac{{\alpha_{m} x}}{2}{\text{d}} x \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{b} {\left[ {\left. {\left( {\frac{\partial W}{{\partial x}}\sin \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} - \left. {\frac{{\alpha_{m} }}{2}\left( {W\cos \frac{{\alpha_{m} x}}{2}} \right)} \right|_{x = 0}^{x = a} } \right]} \sin \frac{{\beta_{n} y}}{2}{\text{d}} y \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{a} {\int_{0}^{b} W } \sin \frac{{\alpha_{m} x}}{2}\sin \frac{{\beta_{n} y}}{2}{\text{d}} x{\text{d}} y{\kern 1pt} {\kern 1pt} \hfill \\ = \left( {\frac{{\alpha_{m} }}{2}} \right)^{2} \left( {\frac{{\beta_{n} }}{2}} \right)^{2} W_{mn} + \int_{0}^{a} {\left[ {\left( { - 1} \right)^{{\frac{n - 1}{2}}} \left. {\frac{{\partial^{3} W}}{{\partial x^{2} \partial y}}} \right|_{y = b} + \frac{{\beta_{n} }}{2}\left. {\frac{{\partial^{2} W}}{{\partial x^{2} }}} \right|_{y = 0} } \right]} \sin \frac{{\alpha_{m} x}}{2}{\text{d}} x \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \left( {\frac{{\beta_{n} }}{2}} \right)^{2} \int_{0}^{b} {\left[ {\left( { - 1} \right)^{{\frac{m - 1}{2}}} \left. {\frac{\partial W}{{\partial x}}} \right|_{x = a} + \left. {\frac{{\alpha_{m} }}{2}W} \right|_{x = 0} } \right]} \sin \frac{{\beta_{n} y}}{2}{\text{d}} y. \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, S., Ullah, S. et al. Analytical bending solutions of thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method. Comp. Appl. Math. 39, 266 (2020). https://doi.org/10.1007/s40314-020-01310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01310-8

Keywords

Mathematics Subject Classification

Navigation