Skip to main content
Log in

A numerical method for solving variable-order solute transport models

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, a radial basis function (RBF)-based numerical scheme is developed which uses the Coimbra variable time fractional derivative of order \(0<\alpha (t,x)< 1\). The Coimbra derivative can efficiently model a dynamical system whose fractional-order behavior changes with time and space locations. The RBF can effectively approximate spatial derivatives in multi-dimensions. The resulted numerical scheme is RBF–FD type and is validated for solute transport problems in 1D and 2D dimension domains. Various cases of variable-order \(0<\alpha (t,x)< 1\) have been discussed. The present numerical scheme can effectively approximate those variable-order models whose exact solution can not be obtained in a simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addison PS, Qu B, Ndumu AS, Pyrah IC (1998) A particle tracking model for non-fickian subsurface diffusion. Math Geol 30(6):695–716

    Article  Google Scholar 

  • Anderson EJ, Phanikumar MS (2011) Surface storage dynamics in large rivers: comparing three-dimensional particle transport, one-dimensional fractional derivative, and multirate transient storage models. Water Resour Res 47(9):1–15

    Article  Google Scholar 

  • Anh VV, Angulo JM, Ruiz-Medina MD (2005) Diffusion on multifractals. Nonlinear Anal Theory Method Appl 63(5–7):e2043–e2056

    Article  Google Scholar 

  • Behrens J, Iske A, Martin K (2003) Adaptive meshfree method of backward characteristics for nonlinear transport equations. Meshfree methods for partial differential equations. Springer, Berlin, Heidelberg, pp 21–36

    MATH  Google Scholar 

  • Bhrawy A, Zaky M (2016) A fractional-order jacobi tau method for a class of time-fractional pdes with variable coefficients. Math Methods Appl Sci 39(7):1765–1779

    Article  MathSciNet  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Caputo M (2003) Diffusion with space memory modelled with distributed order space fractional differential equations. Ann Geophys 46(2). https://doi.org/10.4401/ag-3395

  • Chen CM, Liu F, Anh V, Turner I (2010) Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J Sci Comput 32(4):1740–1760

    Article  MathSciNet  Google Scholar 

  • Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys 12(11–12):692–703

    MathSciNet  MATH  Google Scholar 

  • Cooper GRJ, Cowan DR (2004) Filtering using variable order vertical derivatives. Comput Geosci 30(5):455–459

    Article  Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, Singapore

    Book  Google Scholar 

  • Field MS, Leij FJ (2012) Solute transport in solution conduits exhibiting multi-peaked breakthrough curves. J Hydrol 440:26–35

    Article  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Ingman D, Suzdalnitsky J (2004) Control of damping oscillations by fractional differential operator with time-dependent order. Comput Methods Appl Mech Eng 193(52):5585–5595

    Article  MathSciNet  Google Scholar 

  • Keshi FK, Moghaddam BP, Aghili A (2018) A numerical approach for solving a class of variable-order fractional functional integral equations. Comput Appl Math 37(4):4821–4834

    Article  MathSciNet  Google Scholar 

  • Kikuchi K, Negoro A (1997) On Markov process generated by pseudodifferential operator of variable order. Osaka J Math 34(2):319–335

    MathSciNet  MATH  Google Scholar 

  • Kim S, Kavvas ML (2006) Generalized ficks law and fractional ade for pollution transport in a river: Detailed derivation. J Hydrol Eng 11(1):80–83

    Article  Google Scholar 

  • Kunze H, Davide LT, Mendivil F, Vrscay ER (2011) Fractal-based methods in analysis. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Moghaddam BP, Machado JAT (2017a) A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract Calc Appl Anal 20(4):1023

    MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JAT (2017b) Sm-algorithms for approximating the variable-order fractional derivative of high order. Fund Inf 151(1–4):293–311

    MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JAT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671

    Article  MathSciNet  Google Scholar 

  • Pedro HTC, Kobayashi MH, Pereira JMC, Coimbra CFM (2008) Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J Vib Control 14(9–10):1659–1672

    Article  MathSciNet  Google Scholar 

  • Ramirez LES, Coimbra CFM (2010) On the selection and meaning of variable order operators for dynamic modeling. Int J Differ Equ 2010:16. https://doi.org/10.1155/2010/846107

    Article  MathSciNet  MATH  Google Scholar 

  • Samko SG (1995) Fractional integration and differentiation of variable order. Anal Math 21(3):213–236

    Article  MathSciNet  Google Scholar 

  • Sokolov IM, Chechkin AV, Klafter J (2004) Fractional diffusion equation for a power-law-truncated lévy process. Phys A 336(3–4):245–251

    Article  Google Scholar 

  • Sousa JVC, de Oliveira EC (2018) On the \(\psi \)-hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    Article  MathSciNet  Google Scholar 

  • Sousa JVC, de Oliveira EC (2019) Leibniz type rule: \(\psi \)-hilfer fractional operator. Commun Nonlinear Sci Numer Simul 77:305–311

    Article  MathSciNet  Google Scholar 

  • Sun HG, Chen W, Chen YQ (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388(21):4586–4592

    Article  Google Scholar 

  • Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J Comput Phys 340:655–669

    Article  MathSciNet  Google Scholar 

  • Tseng C-C (2006) Design of variable and adaptive fractional order fir differentiators. Sig Process 86(10):2554–2566

    Article  Google Scholar 

  • Uddin M, Haq S (2011) Rbfs approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simul 16(11):4208–4214

    Article  MathSciNet  Google Scholar 

  • Zaky MA (2018) A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput Appl Math 37(3):3525–3538

    Article  MathSciNet  Google Scholar 

  • Zhang H, Liu F, Phanikumar MS, Meerschaert MM (2013) A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput Math Appl 66(5):693–701

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Uddin.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M., Din, I.U. A numerical method for solving variable-order solute transport models. Comp. Appl. Math. 39, 320 (2020). https://doi.org/10.1007/s40314-020-01355-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01355-9

Keywords

Mathematics Subject Classification

Navigation