Abstract
A numerical method with high accuracy both in time and in space is constructed for the Riesz space fractional diffusion equation, in which the temporal component is discretized by an s-stage implicit Runge–Kutta method and the spatial component is approximated by a spectral Galerkin method. For an algebraically stable Runge–Kutta method of order p\((p\ge s+1)\), the unconditional stability of the full discretization is proven and the convergence order of \(s+1\) in time is obtained. The optimal error estimate in space, with convergence order only depending on the regularity of initial value and f, is also derived. Meanwhile, this kind of method is applied to the Riesz space distributed-order diffusion equation, and similar stability and convergence results are obtained. Finally, numerical experiments are provided to illustrate the theoretical results.









Similar content being viewed by others
Abbreviations
- \( {}_{-1}^{}D^{\mu }_{x}\) :
-
Left Riemann–Liouville fractional derivative operator with \(\mu >0\)
- \((-{\varDelta })^{\frac{\alpha }{2}}\) :
-
Fractional Laplace operator with \(\alpha \in (0,1)\cup (1,2)\)
- \(\frac{\partial ^{\alpha }}{\partial {\vert x\vert }^{\alpha }}\) :
-
Riesz fractional derivative operator with \(\alpha \in (0,2)\)
- \({\hat{H}}\) :
-
Hilbert transform operator
- \({\varLambda }\) :
-
\({\varLambda }=(-1,1)\)
- \(\langle \cdot ,\cdot \rangle _{\omega ^{a,b},{\varOmega }}\) :
-
Inner product in \(L^{2}_{\omega ^{a,b}}({\varOmega })\)
- \(\left\langle \cdot ,\cdot \right\rangle _{H^{k}({\varLambda })}\) :
-
Inner product in \(H^{k}({\varLambda })\) with \(k\in {\mathbb {N}}\)
- \(\left\langle \cdot ,\cdot \right\rangle _{L^{2}({\varLambda })}\) :
-
Inner product in \(L^{2}({\varLambda })\)
- \({\varOmega }\) :
-
\({\varOmega }=(\lambda _{1},\lambda _{2})\)
- \(\omega ^{a,b}(x)\) :
-
\(\omega ^{a,b}(x) = (\frac{2}{\lambda _{2} - \lambda _{1}})^{a+b}(\lambda _{2} - x)^{a}(x - \lambda _{1})^{b}\) is the shifted Jacobi weight function with \(a, b>-1\)
- \(\Vert \cdot \Vert _{\omega ^{a,b},{\varOmega }}\) :
-
Norm in \(L^{2}_{\omega ^{a,b}}({\varOmega })\)
- \(\Vert \cdot \Vert _{H^{\mu }_{0}({\varLambda })}\) :
-
Norm in \(H^{\mu }_{0}({\varLambda })\) with \(\mu >0\)
- \(\vert \cdot \vert _{H^{\mu }_{0}({\varLambda })}\) :
-
Semi-norm in \(H^{\mu }_{0}({\varLambda })\) with \(\mu >0\)
- \(\Vert \cdot \Vert _{H^{k}({\varLambda })}\) :
-
Norm in \(H^{k}({\varLambda })\) with \(k\in {\mathbb {N}}\)
- \(\Vert \cdot \Vert _{L^{2}({\varLambda })}\) :
-
Norm in \(L^{2}({\varLambda })\)
- \(C^{\infty }({\varOmega })\) :
-
Space of infinitely differentiable functions on \({\varOmega }\)
- \(H^{\mu }_{0}({\varLambda })\) :
-
Fractional derivative space on \({\varLambda }\) with \(\mu >0\)
- \(H^{k}({\varLambda })\) :
-
Sobolev space on \({\varLambda }\) with \(k\in {\mathbb {N}}\)
- \(H^{k}_{\omega ^{a,b},*}({\varOmega })\) :
-
\(H^{k}_{\omega ^{a,b},*}({\varOmega }) := \left\{ \eta (x) \in H^{1}{({\varOmega })} {\Big \vert } \frac{{\mathrm {d}}^{j}}{{\mathrm {d}} x^{j}}\eta (x) \in L^{2}_{\omega ^{a+j-1,b+j-1}}({\varOmega }),1 \le j \le k \right\} \) with \(k\in {\mathbb {N}}\)
- \(H^{k}_{\omega ^{a,b}}({\varOmega })\) :
-
\(H^{k}_{\omega ^{a,b}}({\varOmega }):=\left\{ \eta (x){\Big \vert } \frac{{\mathrm {d}}^{j}}{{\mathrm {d}} x^{j}}\eta (x)\in L^{2}_{\omega ^{a+j,b+j}}({\varLambda }),~0\le j\le k \right\} \) with \(k\in {\mathbb {N}}\)
- \(L^{2}({\varLambda })\) :
-
\(L^{2}\) space on \({\varLambda }\)
- \(L^{2}_{\omega ^{a,b}}({\varOmega })\) :
-
\(L^{2}_{\omega ^{a,b}}({\varOmega }):=\{\eta (x)~\vert ~\eta (x)\) is measurable and \(\Vert \eta (x)\Vert _{\omega ^{a,b},{\varOmega }}<\infty \}\)
- \(P_{N}({\varLambda })\) :
-
Space of polynomials defined on \({\varLambda }\) with degree less than or equal to N
- \({}_{x}^{}D^{\mu }_{1}\) :
-
Right Riemann–Liouville fractional derivative operator with \(\mu >0\)
References
Abbaszadeh M (2019) Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett 88:179–185
Benson DA, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour Res 36(6):1413–1423
Biala TA (2019) Second-order predictor-corrector schemes for nonlinear distributed-order space-fractional differential equations with non-smooth initial data. Int J Comput Math 96(9):1861–1878
Bu W, Tang Y, Yang J (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys 276:26–38
Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):1–7 (Article 046129)
Chen M, Deng W (2014) Fourth order accurate scheme for the space fractional diffusion equations. SIAM J Numer Anal 52(3):1418–1438
Chen Y, Tang T (2010) Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comput 79(269):147–167
Chen S, Shen J, Wang LL (2016) Generalized Jacobi functions and their applications to fractional differential equations. Math Comput 85(300):1603–1638
Cheng X, Duan J, Li D (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. Appl Math Comput 346:452–464
Diethelm K, Ford NJ (2009) Numerical analysis for distributed-order differential equations. J Comput Appl Math 225(1):96–104
Ding H, Li C, Chen Y (2015) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys 293:218–237
Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Differ Equ 22(3):558–576
Ervin VJ, Roop JP (2007) Variational solution of fractional advection dispersion equations on bounded domains in \({\mathbb{R}}^{d}\). Numer Methods Partial Differ Equ 23(2):256–281
Fan W, Liu F (2018) A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl Math Lett 77:114–121
Guo BY, Wang LL (2004) Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J Appox Theory 128(1):1–41
Hairer E, Wanner G (1996) Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer, Berlin
Hochbruck M, Pažur T (2015) Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J Numer Anal 53(1):485–507
Kazmi K, Khaliq AQ (2020) An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl Numer Math 147:142–160
Keeling SL (1990) Galerkin/Runge-Kutta discretizations for semilinear parabolic equations. SIAM J Numer Anal 27(2):394–418
Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl Math Model 46:536–553
Li J, Liu F, Feng L, Turner I (2017) A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput Math Appl 74:772–783
Li M, Huang C, Wang P (2017) Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Algor 74(2):499–525
Lin X, Ng MK, Sun H (2019) Crank-Nicolson alternative direction implicit method for space-fractional diffusion equations with nonseparable coefficients. SIAM J Numer Anal 57(3):997–1019
Liu Q, Liu F, Turner I, Anh V (2007) Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J Comput Phys 222(1):57–70
Maday Y (1990) Analysis of spectral projectors in one-dimensional domains. Math Comput 55(192):537–562
Mao Z, Shen J (2016) Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J Comput Phys 307:243–261
Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos 7(4):753–764
Sokolov I, Chechkin A, Klafter J (2004) Distributed-order fractional kinetics. Acta Phys Pol B 35(4):1323–1341
Song F, Xu C (2015) Spectral direction splitting methods for two-dimensional space fractional diffusion equations. J Comput Phys 299:196–214
Srokowski T (2008) Lévy flights in nonhomogeneous media: distributed-order fractional equation approach. Phys Rev E 78(3):1–7 (Article 031135)
Wang D, Xiao A, Yang W (2013) Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J Comput Phys 242:670–681
Wang X, Liu F, Chen X (2015) Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv Math Phys 2015:1–14
Wang Y, Mei L, Li Q, Bu L (2019) Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. Appl Numer Math 136:257–278
Xing Z, Wen L (2019) Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. Appl Math Comput 346:155–166
Zeng F, Liu F, Li C, Burrage K, Turner I, Anh V (2014) A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J Numer Anal 52(6):2599–2622
Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217(6):2534–2545
Zhang H, Liu F, Jiang X, Zeng F, Turner I (2018) A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput Math Appl 76:2460–2476
Zhao X, Sun Z, Hao Z (2014) A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J Sci Comput 36(6):A2865–A2886
Zheng X, Liu H, Wang H, Fu H (2019) An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J Sci Comput 80(3):1395–1418
Acknowledgements
The authors are greatly indebted to the referees for useful comments. This work was supported by the National Natural Science Foundation of China (11771112, 11671112).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by José Tenreiro Machado.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, J., Zhang, Y. & Xu, Y. Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comp. Appl. Math. 39, 47 (2020). https://doi.org/10.1007/s40314-020-1102-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40314-020-1102-3
Keywords
- Implicit Runge–Kutta method
- Spectral Galerkin method
- Riesz space fractional/distributed-order diffusion equation
- Convergence
- Stability