Skip to main content
Log in

A meshfree approach for analysis and computational modeling of non-linear Schrödinger equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, the authors proposed a meshfree approach for simulation of non-linear Schrödinger equation with constant and variable coefficients. Schrödinger equation is a classical field equation whose principal applications are to the propagation of light in non-linear optical fibers and planar waveguides and in quantum mechanics. First of all, spatial derivatives are discretized by using local radial basis functions based on differential quadrature method (LRBF-DQM) and, subsequently, the obtained system of non-linear ordinary differential equations (ODEs) is solved by fourth-order Runge–Kutta (RK-4). The stability analysis of the proposed approach is discussed by the matrix method. Numerical experiments ensure that the proposed approach is accurate and computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Argyris J, Haase M (1987) An engineer’s guide to soliton phenomena: application of the finite element method. Comput Methods Appl Mech Eng 61(1):71–122

    MathSciNet  MATH  Google Scholar 

  • Ávila A, Meister A, Steigemann M (2017) An adaptive galerkin method for the time-dependent complex Schrödinger equation. Appl Numer Math 121:149–169

    MathSciNet  MATH  Google Scholar 

  • Aydın A, Karasözen B (2007) Symplectic and multi-symplectic methods for coupled non-linear Schrödinger equations with periodic solutions. Comput Phys Commun 177(7):566–583

    MATH  Google Scholar 

  • Bashan A, Yagmurlu NM, Ucar Y, Esen A (2017) An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic b-spline differential quadrature method. Chaos Solitons Fractals 100:45–56

    MathSciNet  MATH  Google Scholar 

  • Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    MathSciNet  MATH  Google Scholar 

  • Borhanifar A, Abazari R (2010) Numerical study of non-linear Schrödinger and coupled Schrödinger equations by differential transformation method. Opt Commun 283(10):2026–2031

    MATH  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Dag I (1999) A quadratic b-spline finite element method for solving non-linear schrödinger equation. Comput Methods Appl Mech Eng 174(1–2):247–258

    Google Scholar 

  • Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/gross–Pitaevskii equations via local radial basis functions-differential quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elem 92:156–170

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Mohammadi V (2015) The numerical solution of Cahn–Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFS) and RBFS-differential quadrature (RBFS-DQ) methods. Eng Anal Bound Elem 51:74–100

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional non-linear Schrödinger equations using an explicit time discretization: Runge-Kutta method. Comput Phys Commun 217:23–34

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Nikpour A (2013) Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl Math Model 37(18–19):8578–8599

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Comput Math Appl 54(1):136–146

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Taleei A (2010) A compact split-step finite difference method for solving the non-linear schrödinger equations with constant and variable coefficients. Comput Phys Commun 181(1):43–51

    MATH  Google Scholar 

  • Delfour M, Fortin M, Payr G (1981) Finite-difference solutions of a non-linear Schrödinger equation. J Comput Phys 44(2):277–288

    MathSciNet  MATH  Google Scholar 

  • Duree GC Jr, Shultz JL, Salamo GJ, Segev M, Yariv A, Crosignani B, Di Porto P, Sharp EJ, Neurgaonkar RR (1993) Observation of self-trapping of an optical beam due to the photorefractive effect. Phys Rev Lett 71(4):533

    Google Scholar 

  • Fasshauer GE (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, Singapore

    MATH  Google Scholar 

  • Franke R (1979) A critical comparison of some methods for interpolation of scattered data. In: Technical Report, Naval Postgraduate School, Monterey, California

  • Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  • Gardner L, Gardner G, Zaki S, El Sahrawi Z (1993) B-spline finite element studies of the non-linear Schrödinger equation. Comput Methods Appl Mech Eng 108(3–4):303–318

    MATH  Google Scholar 

  • Guo L, Guo Y, Billings S, Coca D, Lang Z (2013) The use of volterra series in the analysis of the non-linear Schrödinger equation. Nonlinear Dyn 73(3):1587–1599

    MATH  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Google Scholar 

  • Hardy RL (1990) Theory and applications of the multiquadric–biharmonic method 20 years of discovery 1968–1988. Comput Math Appl 19(8–9):163–208

    MathSciNet  MATH  Google Scholar 

  • Hasegawa A, Tappert F (1973) Transmission of stationary non-linear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl Phys Lett 23(3):142–144

    Google Scholar 

  • Hong J, Ji L, Liu Z (2018) Optimal error estimate of conservative local discontinuous galerkin method for non-linear schrödinger equation. Appl Numer Math 127:164–178

    MathSciNet  MATH  Google Scholar 

  • Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the burgers equation. Comput Phys Commun 188:59–67

    MathSciNet  MATH  Google Scholar 

  • Jiwari R, Mittal R, Sharma KK (2013) A numerical scheme based on weighted average differential quadrature method for the numerical solution of burgers equation. Appl Math Comput 219(12):6680–6691

    MathSciNet  MATH  Google Scholar 

  • Jiwari R, Singh S, Kumar A (2017) Numerical simulation to capture the pattern formation of coupled reaction–diffusion models. Chaos Solitons Fractals 103:422–439

    MathSciNet  MATH  Google Scholar 

  • Jiwari R, Kumar S, Mittal R (2019) Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of burgers type problems. Eng Comput 36(4):1142–1168

    Google Scholar 

  • Kansa EJ (1990) Multiquadricsa scattered data approximation scheme with applications to computational fluid-dynamicsii solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8–9):147–161

    MathSciNet  MATH  Google Scholar 

  • Kansa EJ (1990) Multiquadricsa scattered data approximation scheme with applications to computational fluid-dynamicsi surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    MathSciNet  MATH  Google Scholar 

  • Karamali G, Abbaszadeh M, Dehghan M (2018) The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrödinger equation and Schrödinger–Boussinesq system. Comput Methods Differ Equ 6(2):215–237

    MathSciNet  MATH  Google Scholar 

  • Kartashov YV, Malomed BA, Torner L (2011) Solitons in nonlinear lattices. Rev Mod Phys 83(1):247

    Google Scholar 

  • Kivshar YS, Agrawal G (2003) Optical solitons: from fibers to photonic crystals. Academic Press, Cambridge

    Google Scholar 

  • Kong L, Hong J, Ji L, Zhu P (2015) Compact and efficient conservative schemes for coupled non-linear Schrödinger equations. Numer Methods Partial Differ Equ 31(6):1814–1843

    MATH  Google Scholar 

  • Korkmaz A, Dağ İ (2009) A differential quadrature algorithm for non-linear Schrödinger equation. Nonlinear Dyn 56(1–2):69–83

    MATH  Google Scholar 

  • Kumar S, Jiwari R, Mittal R (2019) Numerical simulation for computational modelling of reaction–diffusion brusselator model arising in chemical processes. J Math Chem 57(1):149–179

    MathSciNet  MATH  Google Scholar 

  • Ledoux V, Van Daele M (2014) The accurate numerical solution of the Schrödinger equation with an explicitly time-dependent hamiltonian. Comput Phys Commun 185(6):1589–1594

    MathSciNet  MATH  Google Scholar 

  • Li H, Wang Y (2017) An averaged vector field legendre spectral element method for the non-linear Schrödinger equation. Int J Comput Math 94(6):1196–1218

    MathSciNet  MATH  Google Scholar 

  • Lu W, Huang Y, Liu H (2015) Mass preserving discontinuous galerkin methods for Schrödinger equations. J Comput Phys 282:210–226

    MathSciNet  MATH  Google Scholar 

  • Ma W-X, Chen M (2009) Direct search for exact solutions to the non-linear schrödinger equation. Appl Math Comput 215(8):2835–2842

    MathSciNet  MATH  Google Scholar 

  • Macías-Díaz JE, Tomasiello S (2016) A differential quadrature-based approach a la picard for systems of partial differential equations associated with fuzzy differential equations. J Comput Appl Math 299:15–23

    MathSciNet  MATH  Google Scholar 

  • MacKinnon E (1976) De broglies thesis: a critical retrospective. Am J Phys 44(11):1047–1055

    Google Scholar 

  • Meng G-Q, Gao Y-T, Yu X, Shen Y-J, Qin Y (2012) Multi-soliton solutions for the coupled non-linear Schrödinger-type equations. Nonlinear Dyn 70(1):609–617

    Google Scholar 

  • Mittal R, Jiwari R, Sharma KK (2012) A numerical scheme based on differential quadrature method to solve time dependent burgers equation. Eng Comput 30(1):117–131

    Google Scholar 

  • Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45(13):1095

    Google Scholar 

  • Neugebauer G, Meinel R (1984) General n-soliton solution of the akns class on arbitrary background. Phys Lett A 100(9):467–470

    MathSciNet  Google Scholar 

  • Nohara BT (2007) Governing equations of envelopes created by nearly bichromatic waves on deep water. Nonlinear Dyn 50(1–2):49–60

    MathSciNet  MATH  Google Scholar 

  • Robinson M (1997) The solution of non-linear Schrödinger equations using orthogonal spline collocation. Comput Math Appl 33(7):39–57

    MathSciNet  MATH  Google Scholar 

  • Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28(6):1049

    Google Scholar 

  • Scott AC, Chu F, McLaughlin DW (1973) The soliton: a new concept in applied science. Proc IEEE 61(10):1443–1483

    MathSciNet  Google Scholar 

  • Simmons GF (2016) Differential equations with applications and historical notes. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Sun Z (2019) A meshless symplectic method for two-dimensional non-linear Schrödinger equations based on radial basis function approximation. Eng Anal Bound Elem 104:1–7

    MathSciNet  MATH  Google Scholar 

  • Taha TR (1984) Mj ablowitz, analytical and numerical aspects of certain non-linear evolution equations II. Numerical, nonlinear Schrödinger equation. J Comput Phys 55:203–230

    MathSciNet  Google Scholar 

  • Tomasiello S (2011) A note on three numerical procedures to solve volterra integro-differential equations in structural analysis. Comput Math Appl 62(8):3183–3193

    MathSciNet  MATH  Google Scholar 

  • Tomasiello S (2012) Some remarks on a new dq-based method for solving a class of volterra integro-differential equations. Appl Math Comput 219(1):399–407

    MathSciNet  MATH  Google Scholar 

  • Wang B, Liang D (2018) The finite difference scheme for non-linear Schrödinger equations on unbounded domain by artificial boundary conditions. Appl Numer Math 128:183–204

    MathSciNet  MATH  Google Scholar 

  • Wang J, Wang Y (2018) Numerical analysis of a new conservative scheme for the coupled non-linear Schrödinger equations. Int J Comput Math 95(8):1583–1608

    MathSciNet  Google Scholar 

  • Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    MathSciNet  MATH  Google Scholar 

  • Yadav OP, Jiwari R (2019) Some soliton-type analytical solutions and numerical simulation of non-linear Schrödinger equation. Nonlinear Dyn 95(4):2825–2836

    Google Scholar 

  • Yang X, Zhang H, Xu D (2014) Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J Comput Phys 256:824–837

    MathSciNet  MATH  Google Scholar 

  • Zakharov V, Shabat A (1973) Interaction between solitons in a stable medium. Sov Phys JETP 37(5):823–828

    Google Scholar 

  • Zakharov V, Shabat A, Zakharov V, Shabat A (1971) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. ksper Teoret Fiz 61(1):118134

    Google Scholar 

  • Zhang L, Liew K-M (2014) An element-free based solution for non-linear Schrödinger equations using the Icvmls–Ritz method. Appl Math Comput 249:333–345

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, with grant No.25(0299)/19/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Jiwari.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiwari, R., Kumar, S., Mittal, R.C. et al. A meshfree approach for analysis and computational modeling of non-linear Schrödinger equation. Comp. Appl. Math. 39, 95 (2020). https://doi.org/10.1007/s40314-020-1113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1113-0

Keywords

Mathematics Subject Classification

Navigation