Skip to main content

Mathematical study and optimal control of bioeconomic model concerning harmful dinoflagellate phytoplankton

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The presence of populations potentially harmful dinoflagellate phytoplankton like Oxyrrhis marina requires vigilance and control, because these species, in high density or under certain conditions, can have serious economic consequences and a negative impact on public health. In this investigation, we formulate bioeconomic model of a prey and predator planktonic species. The positivity and boundedness of the solution are studied. The possible equilibriums and their local stability are analyzed; also the global stability of the system around the interior equilibrium is established. We examine the optimal harvesting policy to discuss the dynamical profit of the interacting planktonic species. To show the impact of the toxicity coefficient, we have made analytical estimates that are validated using simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbas S, Banerjee M, Hungerbühler N (2010) Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J Math Anal Appl 367(1):249–259

    Article  MathSciNet  MATH  Google Scholar 

  • Agmour I, Bentounsi M, El foutayeni Y (2017) Optimization of the two fishermen’s profits exploiting three competing species where prices depend on harvest. Int J Differ Equ 3157294:17. https://doi.org/10.1155/2017/3157294

    Article  MathSciNet  MATH  Google Scholar 

  • Agmour I, Achtaich N, El foutayeni Y (2018) Carrying capacity influence on the incomes of seiners exploiting marine species in the Atlantic coast of Morocco. Math Biosci 305:10–17

    Article  MathSciNet  MATH  Google Scholar 

  • Agmour I, Achtaich N, El foutayeni Y (2018) Stability analysis of a competing fish populations model with the presence of a predator. Int. J. Nonlinear Sci 26(2):108–121

    MathSciNet  MATH  Google Scholar 

  • Agmour I, Bentounsi M, Achtaich N, El foutayeni Y (2018) Catchability coefficient influence on the fishermen’s net economic revenues. Commun Math Biol Neurosci. https://doi.org/10.28919/cmbn/3512

    Article  MATH  Google Scholar 

  • Agmour I, Bentounsi M, Baba N, El foutayeni Y, Achtaich N, Aouiti C (2020) Impact of wind speed on fishing effort. Model Earth Syst Environ 6: pp 1-9

  • Arrow KJ, Kurz M (1970) Public investment, the rate of return, and optimal fiscal policy. Johns Hopkins, Baltimore

    Google Scholar 

  • Baba N, Agmour I, Achtaich N, El foutayeni Y (2019) The mathematical study for mortality coefficients of small pelagic species. Commun Math Biol Neurosci 2019:1–31

  • Bandyopadhyay M (2006) Dynamical analysis of a allelopathic phytoplankton model. J Biol Syst 14(02):205–217

    Article  MATH  Google Scholar 

  • Bandyopadhyay M, Saha T, Pal R (2008) Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment. Nonlinear Anal Hybrid Syst 2(3):958–970

    Article  MathSciNet  MATH  Google Scholar 

  • Bates SS, Garrison DL, Horner RA (1998) Bloom dynamics and physiology of domoic-acid-producing Pseudo-nitzschia species. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer-Verlag, Heidelberg, pp 267–292

    Google Scholar 

  • Bentounsi M, Agmour I, Achtaich N, El foutayeni Y (2017) Stability analysis of a biological model of a marine resources allowing density dependent migration. Int Front Sci Lett 12:22–34

    Article  MATH  Google Scholar 

  • Bentounsi M, Agmour I, Achtaich N, El foutayeni Y (2018) The Hopf bifurcation and stability of delayed predator-prey system. Comput Appl Math 37(5):5702–5714

    Article  MathSciNet  MATH  Google Scholar 

  • Bentounsi M, Agmour I, Achtaich N, El foutayeni Y (2018) The impact of price on the profits of fishermen exploiting tritrophic prey-predator fish populations. Int J Differ Equ 10:2. https://doi.org/10.1155/2018/2381483

    Article  MathSciNet  MATH  Google Scholar 

  • Bentounsi M, Agmour I, Achtaich N, El foutayeni Y (2019) Intrinsic growth rates influence on the net economic rents of fishermen. Int J Dyn Syst Differ Equ 9(4):362–379

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G, Rota GC (1982) Ordinary differential equations. Ginn Boston, Boston

    MATH  Google Scholar 

  • Chattopadhyay J (1996) Effect of toxic substances on a two species competitive system. Ecol Model 84:287–289

    Article  Google Scholar 

  • Clark CW (1976) Mathematical bioeconomics: the optimal management resources. Wiley, Hoboken

    MATH  Google Scholar 

  • De Luna JT, Hallam TG (1987) Effects of toxicants on populations: a qualitative approach IV. Resource-consumer-toxicant models. Ecol Model 35(3–4):249–273

    Article  Google Scholar 

  • El foutayeni Y (2012) A bio-economic model of fishery where prices depend harvest. J Adv Model Optim 14:543–555

    MathSciNet  Google Scholar 

  • El foutayeni Y, Khaladi M (2012) A generalized bio-economic model for competing multiple-fish populations where prices depend on harvest. J Adv Model Optim 14:531–542

    MathSciNet  Google Scholar 

  • El foutayeni Y, Khaladi M, Zegzouti A (2012) A generalized Nash equilibrium for a bioeconomic problem of fishing. Stud Inf Univ 10(1):186–204

    Google Scholar 

  • El foutayeni Y, Khaladi M, Zegzouti A (2013) Profit maximization of fishermen. J Adv Model Optim 15(2013):457–469

    MATH  Google Scholar 

  • Flynn KJ, Davidson K (1993) Predator-prey interactions between Isochrysis galbana and Oxyrrhis marina. II. Release of non-protein amines and faeces during predation of Isochrysis. J Plank Res 15(8):893–905

    Article  Google Scholar 

  • Freedman HI, Shukla JB (1991) Models for the effect of toxicant in single-species and predator-prey systems. J Math Biol 30(1):15–30

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK (1971) Functional differential equations. In: Hsieh PF, Stoddart AWJ (eds) Analytic Theory of Differential Equations. Lecture Notes in Mathematics, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0060406

  • Hallam TG, Clark CE (1981) Non-autonomous logistic equations as models of populations in a deteriorating environment. J Theoret Biol 93(2):303–311

    Article  Google Scholar 

  • Hallam TG, De Luna JT (1984) Effects of toxicants on populations: a qualitative: approach III. Environmental and food chain pathways. J Theoret Biol 109(3):411–429

    Article  Google Scholar 

  • Hallegraeff GM (2003) Harmful algal blooms: a global overview. Man Harmful Mar Microalgae 33:1–22

    Google Scholar 

  • Kar K, Chaudhuri KS (2003) On non-selective harvesting of two competing fish species in the presence of toxicity. Ecol Model 161(1–2):125–137

    Article  Google Scholar 

  • Kot M (2001) Elements of mathematical. Ecology 50:205–207

    Google Scholar 

  • Maynard-Smith J (1978) Models in ecology. CUP Archive, Cambridge

    MATH  Google Scholar 

  • Montagnes DJ, Lowe CD, Martin L, Watts PC, Downes-Tettmar N, Yang Z, Davidson K (2011) Oxyrrhis marina growth, sex and reproduction. J Plankton Res 33(4):615–627

    Article  Google Scholar 

  • Mukhopadhyay A, Chattopadhyay J, Tapaswi PK (1998) A delay differential equations model of plankton allelopathy. Math Biosci 149(2):167–189

    Article  MathSciNet  MATH  Google Scholar 

  • Mukhopadhyay A, Tapaswi PK, Chattopadhyay J (2003) A space-time state-space model of phytoplankton allelopathy. Nonlinear Anal Real World Appl 4(3):437–456

    Article  MathSciNet  MATH  Google Scholar 

  • Pontryagin LS (2018) Mathematical theory of optimal processes. Routledge, London

    Book  Google Scholar 

  • Sommer H, Meyer KF (1937) Paralytic shell-fish poisoning. Arch Pathol 24:560–98

    Google Scholar 

  • Sommer H, Whedon WF, Kofoid CA, Stohler R (1937) Relation of paralytic shell-fish poison to certain plankton organisms of the genus Gonyaulax. Arch Pathol 24:537–59

    Google Scholar 

  • Taylor FJR (1998) The neurotoxic dinoflagellate genus Alexandrium halim: general introduction. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 3–11

    Google Scholar 

  • Yasumoto T, Oshima Y, Sugawara W, Fukuyo Y, Oguri H, Igarashi T, Fujita N (1980) Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoning. Bull Jpn Soc Sci Fish 46(11):1405–1411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef El foutayeni.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agmour, I., Baba, N., Bentounsi, M. et al. Mathematical study and optimal control of bioeconomic model concerning harmful dinoflagellate phytoplankton. Comp. Appl. Math. 40, 129 (2021). https://doi.org/10.1007/s40314-021-01509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01509-3

Keywords

Mathematics Subject Classification