Skip to main content
Log in

A robust computational framework for analyzing the Bloch–Torrey equation of fractional order

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the last decade, the analysis of time-space fractional Bloch–Torrey equation has been considered by different studies due to its applications in many fields. Since the analytical solution of this equation is difficult or impossible, numerical solutions can be helpful and sometimes are the only choice. Therefore, in this work, a numerical-based solution is shown by virtue of the Crank–Nicolson weighted shifted Grunwald difference method. The stability, as well as solvability of this method, are also investigated. It is shown that the method for time-space fractional Bloch–Torrey equation is of order \({\mathcal {O}}({\tau ^{2 - \alpha }},{h^2})\), where \(0<\alpha <1\). Also, \(\tau \) and h are the time step and space step, respectively. At the end, numerical applications are presented and the thrust of the present study is compared with other sophisticated schemes in the literature. The main advantage of the proposed scheme is that, it is more efficient in terms of accuracy and CPU time in comparing with the existing ones in open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akgul EK (2018) A novel method for the space and time fractional Bloch–Torrey equations. Therm Sci 22:253–258

    Article  Google Scholar 

  • Azizi A, Abdi S, Saeidian J (2018) Applying Legendre wavelet method with Tikhonov regularization for one-dimensional time-fractional diffusion equations. Comput Appl Math 37:4793–4804

    Article  MathSciNet  Google Scholar 

  • Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus models and numerical methods. World Scientific, Singapore

    Book  Google Scholar 

  • Butzer PL, Wefon R (1972) On the Lax equivalence theorem equipped with orders. J Approx Theory 19:239–252

    Article  MathSciNet  Google Scholar 

  • Celik C, Duman M (2012) Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J Comput Phys 231:1743–1750

    Article  MathSciNet  Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2016) Analysis of a meshless method for the time fractional diffusion-wave equation. Numer Algorithms 4:445–476

    Article  MathSciNet  Google Scholar 

  • Erfanifar R, Sayevand K, Ghanbari N, Esmaeili H (2021) A modified Chebyshev \(\vartheta \)-weighted Crank–Nicolson method for analyzing fractional sub-diffusion equations. Numer Methods Partial Differ Equ 37(1):614–625

    Article  MathSciNet  Google Scholar 

  • Hou T, Tang T, Yang J (2017) Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J Sci Comput 72:1214–1231

    Article  MathSciNet  Google Scholar 

  • Ingo C, Magin RL, Colon-Perez L, Triplett W, Mareci TH (2014) On random walks and entropy in diffusion weighted magnetic resonance imaging studies of neural tissue. Magn Reson Med 71:617–627

    Article  Google Scholar 

  • Jafari H, Firoozjaee MA, Johnston SJ (2020) An effective approach to solve a system fractional differential equations. Alex Eng J 59(5):3213–3219

    Article  Google Scholar 

  • Jinji N (2014) Comparative statics for oligopoly: a generalized result. Econ Lett 124(1):79–82

    Article  MathSciNet  Google Scholar 

  • Kazem S, Dehghan M (2019) Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Eng Comput 35(1):229–241

    Article  Google Scholar 

  • Kilbas A, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kincaid D, Cheney W (1991) Numerical analysis. Brooks/Cole Publishing, California

    MATH  Google Scholar 

  • Kumar S, Faraz N, Sayevand K (2014) A Fractional model of Bloch equation in nuclear magnetic resonance and its analytic approximate solution. Walailak J Sci Technol 11(4):273–285

    Google Scholar 

  • Lin FR, Wang QY, Jin XQ (2020) Crank–Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations. Numer Algorithms 363:77–91

    Google Scholar 

  • Liu F, Feng L, Anh V, Li J (2019) Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput Math Appl 78(5):1637–1650

    Article  MathSciNet  Google Scholar 

  • Magin RL, Abdullah O, Baleanu D, Zhou XJ (2008) Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J Magn Reson 190:255–270

    Article  Google Scholar 

  • Magin RL, Hall MG, Karaman MM, Vegh V (2020) Fractional calculus models of magnetic resonance phenomena: relaxation and diffusion. Crit Rev Biomed Eng 48:285–326

    Article  Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77

    Article  MathSciNet  Google Scholar 

  • Nikan O, Avazzadeh Z, Tenreiro Machado JA (2020) Numerical investigation of fractional nonlinear sine-Gordon and Klein–Gordon models arising in relativistic quantum mechanics. Eng Anal Bound Elem 120:223–237

    Article  MathSciNet  Google Scholar 

  • Nikan O, Avazzadeh Z, Tenreiro Machado JA (2021a) An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2020.101243

    Article  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Tenreiro Machado JA (2021b) Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2021.105755

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Tenreiro Machado JA, Golbabai A, Rashidinia J (2021c) Numerical evaluation of the fractional Klein–Kramers model arising in molecular dynamics. J Comput Phys. https://doi.org/10.1016/j.jcp.2020.109983

    Article  MathSciNet  Google Scholar 

  • Ortigueira MD (2006) Riesz potential operators and inverses via fractional centred derivatives. Int J Math Math Sci 2006:048391. https://doi.org/10.1155/IJMMS/2006/48391

  • Ortigueira MD (2011) Fractional calculus for scientists and engineers. Springer, Berlin

    Book  Google Scholar 

  • Qin S, Liu F, Turner IW, Yang Q, Yu Q (2018) Modelling anomalous diffusion using fractional Bloch–Torrey equations on approximate irregular domains. Comput Math Appl 75(1):7–21

    Article  MathSciNet  Google Scholar 

  • Samko SG, Kilbas A, Marichev O (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Langhorne

    MATH  Google Scholar 

  • Sayevand K, Machado JT, Moradi V (2019) A new non-standard finite difference method for analyzing the fractional Navier–Stokes equations. Comput Math Appl 78(5):1681–1694

    Article  MathSciNet  Google Scholar 

  • Sun Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209

    Article  MathSciNet  Google Scholar 

  • Sun H, Sun ZZ, Gao GH (2016) Some high order difference schemes for the space and time fractional Bloch–Torrey equations. Appl Math Comput 281:356–380

    MathSciNet  MATH  Google Scholar 

  • Tajadodi H, Kadkhoda N, Jafari H (2020) Approximate technique for solving fractional variational problems. Pramana 94(1):1–8

    Article  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, Berlin

    Google Scholar 

  • Tian W, Zhou H, Deng W (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727

    Article  MathSciNet  Google Scholar 

  • Van Nguyen D, Li JR, Grebenkov D, Le Bihan D (2014) A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging. J Comput Phys 263:283–302

    Article  MathSciNet  Google Scholar 

  • Zhuang P, Liu F, Anh V, Turner I (2009) Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J Appl Math 74(5):645–667

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their cordial thanks to the editor and three anonymous referees for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sayevand.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevand, K., Ghanbari, N. & Masti, I. A robust computational framework for analyzing the Bloch–Torrey equation of fractional order. Comp. Appl. Math. 40, 131 (2021). https://doi.org/10.1007/s40314-021-01513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01513-7

Keywords

Mathematics Subject Classification