Skip to main content
Log in

LMI-based stability analysis of fractional order systems of neutral type with time varying delays under actuator saturation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This article addresses the stability of uncertain fractional order systems of neutral type under actuator saturation. Some criteria regarding the asymptotic robust stability of such type of systems are constructed with the help of the Lyapunov–Krasovskii functional. Moreover, a state-feedback control law is formulated by means of linear matrix inequalities. In order to analyze the domain of attraction, an algorithm for determining the controller gain is provided via the cone complementarity linearization method. The main results are illustrated via numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afshari M, Mobayen S, Hajmohammadi R, Baleanu D (2018) Global sliding mode control via linear matrix inequality approach for uncertain chaotic systems with input nonlinearities and multiple delays. J Comput Nonlinear Dyn 13(3):031008

  • Aghayan ZS, Alfi A, Tenreiro Machado J (2020) Stability analysis of fractional order neutral-type systems considering time varying delays, nonlinear perturbations, and input saturation. Math Methods Appl Sci 43(17):10332–10345

    MathSciNet  MATH  Google Scholar 

  • Alaviyan Shahri ES, Alfi A, Tenreiro Machado J (2018a) Robust stability and stabilization of uncertain fractional order systems subject to input saturation. J Vib Control 24(16):3676–3683

    MathSciNet  MATH  Google Scholar 

  • Alaviyan Shahri ES, Alfi A, Tenreiro Machado J (2018b) Stability analysis of a class of nonlinear fractional-order systems under control input saturation. Int J Robust Nonlinear Control 28(7):2887–2905

    MathSciNet  MATH  Google Scholar 

  • Ali MS, Saravanan S, Zhu Q (2017) Finite-time stability of neutral-type neural networks with random time-varying delays. Int J Syst Sci 48(15):3279–3295

    MathSciNet  MATH  Google Scholar 

  • Almeida R, Girejko E, Hristova S, Malinowska AB (2019) Leader-following consensus for fractional multi-agent systems. Adv Differ Equ 2019(1):301

    MathSciNet  Google Scholar 

  • Altun Y (2019) Further results on the asymptotic stability of Riemann–Liouville fractional neutral systems with variable delays. Adv Differ Equ 2019(1):1–13

    MathSciNet  Google Scholar 

  • Badri P, Sojoodi M (2019a) Stability and stabilization of fractional-order systems with different derivative orders: an LMI approach. Asian J Control 21(5):2270–2279

    MathSciNet  MATH  Google Scholar 

  • Badri P, Sojoodi M (2019b) Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach. Int J Syst Sci 50(9):1718–1730

    MathSciNet  Google Scholar 

  • Badri P, Sojoodi M (2019c) LMI-based robust stability and stabilization analysis of fractional-order interval systems with time-varying delay. arXiv preprint arXiv:1909.08415

  • Baleanu D, Sajjadi SS, Jajarmi A, Asad JH (2019) New features of the fractional Euler–Lagrange equations for a physical system within non-singular derivative operator. Eur Phys J Plus 134(4):181

    Google Scholar 

  • Benzaouia A, Mesquine F, Benhayoun M, Ben Braim A (2019) Stabilization of continuous-time fractional positive systems with delays and asymmetric control bounds. J Dyn Syst Meas Control 141(5):051008

  • Chartbupapan W, Bagdasar O, Mukdasai K (2020) A novel delay-dependent asymptotic stability conditions for differential and Riemann–Liouville fractional differential neutral systems with constant delays and nonlinear perturbation. Mathematics 8(1):82

    Google Scholar 

  • Chen W, Dai H, Song Y, Zhang Z (2017) Convex Lyapunov functions for stability analysis of fractional order systems. IET Control Theory Appl 11(7):1070–1074

    MathSciNet  Google Scholar 

  • Cheng J, Zhu H, Zhong S, Li G (2013) Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations. Appl Math Comput 219(14):7741–7753

    MathSciNet  MATH  Google Scholar 

  • Cui K, Lu J, Li C, He Z, Chu YM (2019) Almost sure synchronization criteria of neutral-type neural networks with Lévy noise and sampled-data loss via event-triggered control. Neurocomputing 325:113–120

    Google Scholar 

  • Du F, Lu JG (2020) Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. Appl Math Comput 375:125079

    MathSciNet  Google Scholar 

  • El Fezazi N, El Haoussi F, Tissir EH, Alvarez T, Tadeo F (2017) Robust stabilization using LMI techniques of neutral time-delay systems subject to input saturation. J Phys Conf Ser 783:012031

    Google Scholar 

  • El Fezazi N, Elfakir Y, Bender FA, Idrissi S (2020) AQM congestion controller for TCP/IP networks: multiclass traffic. J Control Autom Electr Syst 31:948–958

    Google Scholar 

  • El Fezazi N, Lamrabet O, El Haoussi F, Tissir EH (2019) New observer-based controller design for delayed systems subject to input saturation and disturbances. Iran J Sci Technol Trans Electr Eng 44:1–12

  • Elahi A, Alfi A (2017) Finite-time \({H}_\infty \) control of uncertain networked control systems with randomly varying communication delays. ISA Trans 69:65–88

    Google Scholar 

  • Gu K, Chen J, Kharitonov V (2003) Stability of time-delay systems. Springer Science and Business, Berlin

    MATH  Google Scholar 

  • Hajmohammadi R, Mobayen S (2019) An efficient observer design method for singular discrete-time systems with time delays and nonlinearity: LMI approach. Sci Iran 26(3):1690–1699

    Google Scholar 

  • Han QL (2005) Stability analysis for a partial element equivalent circuit (PEEC) model of neutral type. Int J Circuit Theory Appl 33(4):321–332

    MATH  Google Scholar 

  • He Y, Wu M, She JH, Liu GP (2004) Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst Control Lett 51(1):57–65

    MathSciNet  MATH  Google Scholar 

  • Iqbal M, Rehan M, Hong KS, Khaliq A et al (2015) Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation. Chaos Solitons Fractals 77:158–169

    MathSciNet  MATH  Google Scholar 

  • Jafari M, Mobayen S, Roth H, Bayat F (2021) Nonsingular terminal sliding mode control for micro-electro-mechanical gyroscope based on disturbance observer: linear matrix inequality approach. J Vib Control. https://doi.org/10.1177/1077546320988192

    Article  Google Scholar 

  • Kuang Y (1993) Delay differential equations: with applications in population dynamics. Academic Press, Cambridge

    MATH  Google Scholar 

  • Lamrabet O, Tissir EH, El Haoussi F (2019) Anti-windup compensator synthesis for sampled-data delay systems. Circuits Syst Signal Process 38(5):2055–2071

    MathSciNet  Google Scholar 

  • Lamrabet O, Tissir EH, El Fezazi N, El Haoussi F (2020) Input–output approach and scaled small gain theorem analysis to sampled-data systems with time-varying delay. Int J Control Autom Syst 18(9):2242–2250

    Google Scholar 

  • Lim YH, Oh KK, Ahn HS (2012) Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans Autom Control 58(4):1062–1067

    MathSciNet  MATH  Google Scholar 

  • Liu PL (2013) Improved delay-dependent stability of neutral type neural networks with distributed delays. ISA Trans 52(6):717–724

    Google Scholar 

  • Liu S, Wu X, Zhang YJ, Yang R (2017) Asymptotical stability of Riemann–Liouville fractional neutral systems. Appl Math Lett 69:168–173

    MathSciNet  MATH  Google Scholar 

  • Lu Z, Zhu Y, Xu Q (2020) Asymptotic stability of fractional neutral stochastic systems with variable delays. Eur J Control. https://doi.org/10.1016/j.ejcon.2020.05.005

    Article  MATH  Google Scholar 

  • Malinowska AB, Odzijewicz T, Schmeidel E (2017) On the existence of optimal controls for the fractional continuous-time cucker–smale model, pp. 227–240

  • Manitius A (1984) Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation. IEEE Trans Autom Control 29(12):1058–1068

    MathSciNet  Google Scholar 

  • Mesquine F, Hmamed A, Benhayoun M, Benzaouia A, Tadeo F (2015) Robust stabilization of constrained uncertain continuous-time fractional positive systems. J Frankl Inst 352(1):259–270

    MathSciNet  MATH  Google Scholar 

  • Mizrak OO, Mizrak C, Kashkynbayev A, Kuang Y (2020) Can fractional differentiation improve stability results and data fitting ability of a prostate cancer model under intermittent androgen suppression therapy? Chaos Solitons Fractals 131:109529

    MathSciNet  Google Scholar 

  • Modiri A, Mobayen S (2020) Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems. ISA Trans 105:33–50

    Google Scholar 

  • Mohsenipour R, Fathi Jegarkandi M (2019) Robust stability analysis of fractional-order interval systems with multiple time delays. Int J Robust Nonlinear Control 29(6):1823–1839

    MathSciNet  MATH  Google Scholar 

  • Nguyen LHV, Bonnet C, Fioravanti AR (2016) \({H}_\infty \)-stability analysis of fractional delay systems of neutral type. SIAM J Control Optim 54(2):740–759

    MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2020) High-dimensional spatial patterns in fractional reaction–diffusion system arising in biology. Chaos Solitons Fractals 134:109723

    MathSciNet  Google Scholar 

  • Pahnehkolaei SMA, Alfi A, Machado JT (2017) Uniform stability of fractional order leaky integrator echo state neural network with multiple time delays. Inf Sci 418:703–716

    MATH  Google Scholar 

  • Pahnehkolaei SMA, Alfi A, Machado JT (2019) Stability analysis of fractional quaternion-valued leaky integrator echo state neural networks with multiple time-varying delays. Neurocomputing 331:388–402

    MATH  Google Scholar 

  • Petersen IR (1987) A stabilization algorithm for a class of uncertain linear systems. Syst Control Lett 8(4):351–357

    MathSciNet  MATH  Google Scholar 

  • Phoojaruenchanachai S, Uahchinkul K, Prempraneerach Y (1998) Robust stabilisation of a state delayed system. IEE Proc Control Theory Appl 145(1):87–91

    MATH  Google Scholar 

  • Rakkiyappan R, Velmurugan G, Cao J (2014) Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn 78(4):2823–2836

    MathSciNet  MATH  Google Scholar 

  • Salamon D (1984) Control and observation of neutral systems. Pitman Advanced Publishing Program, Boston

    MATH  Google Scholar 

  • Shahri ESA, Alfi A, Machado JT (2020) Lyapunov method for the stability analysis of uncertain FO systems under input saturation. Appl Math Model 81:663–672

    MathSciNet  Google Scholar 

  • Song S, Park JH, Zhang B, Song X (2020) Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation. Appl Math Comput 364:124662

    MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2019) On history of mathematical economics: application of fractional calculus. Mathematics 7(6):509

    Google Scholar 

  • Tarasov VE (2020) Fractional nonlinear dynamics of learning with memory. Nonlinear Dyn 100(2):1231–1242

    MathSciNet  MATH  Google Scholar 

  • Valério D, Trujillo JJ, Rivero M, Machado JT, Baleanu D (2013) Fractional calculus: a survey of useful formulas. Eur Phys J Spec Top 222(8):1827–1846

    Google Scholar 

  • Wang T, Li T, Zhang G, Fei S (2017) Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems. ISA Trans 70:116–124

    Google Scholar 

  • Wu T, Xiong L, Cao J, Liu X (2018) Further results on robust stability for uncertain neutral systems with distributed delay. J Inequalities Appl 2018(1):1–16

    MathSciNet  Google Scholar 

  • Xiao J, Cao J, Cheng J, Zhong S, Wen S (2020) Novel methods to finite-time Mittag–Leffler synchronization problem of fractional-order quaternion-valued neural networks. Inf Sci 526:221–224

    MathSciNet  MATH  Google Scholar 

  • Zhang F (2006) The Schur complement and its applications, vol 14. Springer Science and Business Media, Berlin

    Google Scholar 

  • Zhang H, Ye R, Liu S, Cao J, Alsaedi A, Li X (2018) LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays. Int J Syst Sci 49(3):537–545

    MathSciNet  MATH  Google Scholar 

  • Zou C, Zhang L, Hu X, Wang Z, Wik T, Pecht M (2018) A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J Power Sour 390:286–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Alfi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Agnieszka Malinowska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghayan, Z.S., Alfi, A. & Machado, J.A.T. LMI-based stability analysis of fractional order systems of neutral type with time varying delays under actuator saturation. Comp. Appl. Math. 40, 142 (2021). https://doi.org/10.1007/s40314-021-01522-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01522-6

Keywords

Mathematics Subject Classification

Navigation