Skip to main content
Log in

On the partial delta differentiability of fuzzy-valued functions via the generalized Hukuhara difference

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose the concept of partial delta derivatives of binary fuzzy-valued functions on time scales via the generalized Hukuhara difference. The first focus is on the definition and essential properties of the partial delta derivatives that are naturally investigated based on the limit of fuzzy-valued functions on time scales. Then, we consider the fuzzy transport equation on time scales as an application of the proposed derivatives. Some examples are provided to illustrate their solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The closeness of a time scale on \({\mathbb {R}}\) is defined with respect to the standard (usual) topology on \({\mathbb {R}}\). In this topological space, a set \(U\subset {\mathbb {R}}\) is open iff for any point \(u\in U\), there exists \(\delta >0\) such that a point x is in U if \(|x-u|<\delta \) (see in Hu (1966)).

  2. A set \(U\subset {\mathbb {R}}\) is open in \({\mathbb {R}}\) iff for any point \(u\in U\), there exists \(\delta >0\) such that a point x is in U if \(|x-u|<\delta \).

  3. Let \((s,t)\in {\mathbb {T}}\times {\mathbb {T}}\) be arbitrary. One can see that s is left and right scattered. It follows that \(\displaystyle \lim ^\varDelta _{x\dashrightarrow s}F(x,t)=F(s,t)\) (see Theorem 10), and \(\left( F(\sigma _{_{{\mathbb {S}}}}(s),t), F(s, t)\right) \) is a gH-representative of \(\left( F(\sigma _{_{{\mathbb {S}}}}(s),t), F(x, t)\right) \) at the point s, where we choose a neighborhood \(U_{\mathbb {T}}(s,\delta )\) with \(0<\delta <\min \{\sigma _{_{{\mathbb {S}}}}(s)-s,s-\rho _{_{{\mathbb {S}}}}(s)\}\). Therefore, from i) of Theorem 20, we obtain that F is \(\varDelta _{gH}\)-differentiable with respect to s. Similarly, one can verify the differentiability of F with respect to t.

  4. Considering other types of the problem is beyond the primary goal of this paper.

  5. \(e_p(s,t)\) is a generalized exponential function on time scale \({\mathbb {T}}\). Its definition and fundamental properties are provided below in the Appendix.

References

  • Agarwal R, Bohner M, o’Regan D, Peterson A (2002) Dynamic equations on time scales: a survey. J Comput Appl Math 141(1-2): 1–26

  • Ahmad MZ, Hasan MK (2012) Modeling of biological populations using fuzzy differential equations. In: International journal of modern physics: conference series, 9, pp 354–363. World Scientific

  • Allahviranloo T, Gouyandeh Z, Armand A, Hasanoglu A (2015) On fuzzy solutions for heat equation based on generalized hukuhara differentiability. Fuzzy Sets Syst 265:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • An TV, Vu H, Van Hoa N (2017) A new technique to solve the initial value problems for fractional fuzzy delay differential equations. Adv Differ Equ 2017(1):1–20

    MathSciNet  MATH  Google Scholar 

  • Atici FM, Biles DC, Lebedinsky A (2006) An application of time scales to economics. Math Comput Model 43(7–8):718–726

    Article  MathSciNet  MATH  Google Scholar 

  • Bahrami F, Alikhani R, Khastan A (2018) Transport equation with fuzzy data. Iran J Fuzzy Syst 15(7):67–78

    MathSciNet  MATH  Google Scholar 

  • Bede B, Gal SG et al (2010) Solutions of fuzzy differential equations based on generalized differentiability. Commun Math Anal 9(2):22–41

    MathSciNet  MATH  Google Scholar 

  • Bede B, Rudas IJ, Bencsik AL (2007) First order linear fuzzy differential equations under generalized differentiability. Inform Sci 177(7):1648–1662

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Stefanini L (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119–141

    Article  MathSciNet  MATH  Google Scholar 

  • Bohner M, Fan M, Zhang J (2007) Periodicity of scalar dynamic equations and applications to population models. J Math Anal Appl 330(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Bohner M, Georgiev SG (2016) Multivariable dynamic calculus on time scales. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bohner M, Guseinov GS (2004) Partial differentiation on time scales. Dyn Syst Appl 13(3–4):351–379

    MathSciNet  MATH  Google Scholar 

  • Bohner M, Guseinov GS (2007) Double integral calculus of variations on time scales. Comput Math Appl 54(1):45–57

    Article  MathSciNet  MATH  Google Scholar 

  • Bohner M, Peterson A (2001) Dynamic equations on time scales: an introduction with applications. Springer Science & Business Media, Berlin

  • Bohner M, Stanzhytskyi OM, Bratochkina AO (2013) Stochastic dynamic equations on general time scales. Electron J Differ Equ 2013(57):1–15

    MathSciNet  MATH  Google Scholar 

  • Buckley JJ (1992) Solving fuzzy equations in economics and finance. Fuzzy Sets Syst 48(3):289–296

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1982) Towards fuzzy differential calculus part 1: integration of fuzzy mappings. Fuzzy Sets Syst 8(1):1–17

    Article  MATH  Google Scholar 

  • Dubois D, Prade H (1982) Towards fuzzy differential calculus part 2: Integration on fuzzy intervals. Fuzzy Sets Syst 8(2):105–116

    Article  MATH  Google Scholar 

  • Dubois D, Prade H (1982) Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst 8(3):225–233

    Article  MATH  Google Scholar 

  • Ernst T (2012) A comprehensive treatment of q-calculus. Springer Science & Business Media, Berlin

  • Fard OS, Bidgoli T (2017) Existence and uniqueness of solutions to the second order fuzzy dynamic equations on time scales. Adv Differ Equ 2017(1):231

    Article  MathSciNet  MATH  Google Scholar 

  • Fard OS, Bidgoli TA (2015) Calculus of fuzzy functions on time scales (i). Soft Comput 19(2):293–305

    Article  MATH  Google Scholar 

  • Gasilov N, Amrahov ŞE, Fatullayev AG (2014) Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Syst 257:169–183

    Article  MathSciNet  MATH  Google Scholar 

  • Georgiev S (2018) Fractional dynamic calculus and fractional dynamic equations on time scales. Springer, Berlin

    Book  MATH  Google Scholar 

  • Georgiev SG Integral equations on time scales (2016)

  • Georgiev SG (2018) Functional dynamic equations on time scales. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ghandar A, Michalewicz Z, Schmidt M, To TD, Zurbruegg R (2007) A computational intelligence portfolio construction system for equity market trading. In: 2007 IEEE congress on evolutionary computation, pp 798–805. IEEE

  • Gouyandeh Z, Allahviranloo T, Abbasbandy S, Armand A (2017) A fuzzy solution of heat equation under generalized hukuhara differentiability by fuzzy fourier transform. Fuzzy Sets Syst 309:81–97

    Article  MathSciNet  MATH  Google Scholar 

  • Guzowska M, Malinowska AB, Ammi MRS (2015) Calculus of variations on time scales: applications to economic models. Adv Differ Equ 2015(1):203

    Article  MathSciNet  MATH  Google Scholar 

  • Hong S (2009) Differentiability of multivalued functions on time scales and applications to multivalued dynamic equations. Nonlinear Anal 71(9):3622–3637

    Article  MathSciNet  MATH  Google Scholar 

  • Hong S, Cao X, Chen J, Hou H, Luo X (2020) General forms of solutions for linear impulsive fuzzy dynamic equations on time scales. Discrete Dyn Nat Soc 2020

  • Hu ST (1966) Introduction to general topology. Holden-Day, Toronto

    MATH  Google Scholar 

  • Kaleva O (2006) A note on fuzzy differential equations. Nonlinear Anal 64(5):895–900

    Article  MathSciNet  MATH  Google Scholar 

  • Khastan A, Hejab S (2019) First order linear fuzzy dynamic equations on time scales. Iran J Fuzzy Syst 16(2):183–196

    MathSciNet  MATH  Google Scholar 

  • Leelavathi R, Kumar GS, Murty M (2020a) Second type nabla hukuhara differentiability for fuzzy functions on time scales. Italian J Pure Appl Math pp 779 (2020a)

  • Leelavathi R, Suresh Kumar G, Agarwal RP, Wang C, Murty M (2020b) Generalized nabla differentiability and integrability for fuzzy functions on time scales. Axioms 9(2):65

    Article  Google Scholar 

  • Lungan C, Lupulescu V (2012) Random dynamical systems on time scales. Electron J Differ Equ 2012(86):1–14

    MathSciNet  MATH  Google Scholar 

  • Lupulescu V (2013) Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inform Sci 248:50–67

    Article  MathSciNet  MATH  Google Scholar 

  • Martynyuk AA (2016) Stability theory for dynamic equations on time scales. Springer, Berlin

    Book  MATH  Google Scholar 

  • Maximon LC (2016) Differential and difference equations: a comparison of methods of solution. Springer, Berlin

    Book  MATH  Google Scholar 

  • Mickens RE (2015) Difference equations: theory, applications and advanced topics. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Nieto J, Khastan A, Ivaz K (2009) Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal 3(4):700–707

    MathSciNet  MATH  Google Scholar 

  • Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91(2):552–558

    Article  MathSciNet  MATH  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24(3):319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Shahidi M, Khastan A (2020) Linear fuzzy volterra integral equations on time scales. Comput Appl Math 39:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini L (2010) A generalization of hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst 161(11):1564–1584

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini L, Bede B (2009) Generalized hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal 71(3–4):1311–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Vasavi C, Kumar GS, Murty M (2016) Fuzzy hukuhara delta differential and applications to fuzzy dynamic equations on time scales. J Uncertain Syst 10(3):163–180

    Google Scholar 

  • Vasavi C, Kumar GS, Murty M (2016) Generalized differentiability and integrability for fuzzy set-valued functions on time scales. Soft Comput 20(3):1093–1104

    Article  MATH  Google Scholar 

  • Xing Y, Han M, Zheng G (2005) Initial value problem for first-order integro-differential equation of volterra type on time scales. Nonlinear Anal 60(3):429–442

    MathSciNet  MATH  Google Scholar 

  • Xu C, Liao M, Li P, Liu Z (2020) Almost automorphic solutions to cellular neural networks with neutral type delays and leakage delays on time scales. Int J Comput Intell Syst 13(1):1–11

    Article  Google Scholar 

  • Yang L, Fei Y, Wu W (2019) Periodic solution for \(\nabla \)-stochastic high-order hopfield neural networks with time delays on time scales. Neural Process Lett 49(3):1681–1696

    Article  Google Scholar 

  • Yang L, Li Y (2015) Existence and exponential stability of periodic solution for stochastic hopfield neural networks on time scales. Neurocomputing 167:543–550

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zhang J, Fan M, Zhu H (2010) Periodic solution of single population models on time scales. Math Comput Model 52(3–4):515–521

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by the ERDF/ESF project AI-Met4AI (No. CZ.02.1.01/0.0/0.0/17_049/0008414).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Tri Truong.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable

Availability of data and material

Not applicable

Code availability

Not applicable

Additional information

Communicated by Regivan Hugo Nunes Santiago.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section provides the definition and fundamental properties of the generalized exponential function on time scales.

Definition 20

( see Bohner and Peterson 2001.) A function \(f : {\mathbb {T}}\rightarrow {\mathbb {R}}\) is said to be right-dense continuous (rd-continuous), if the following statements hold:

i):

\(\displaystyle \lim _{t\dashrightarrow t_o}^\varDelta f(t)=f(t_0)\), for any right dense point \(t_0\in {\mathbb {T}}\),

ii):

\(\displaystyle \lim _{t\dashrightarrow t_1^-}^\varDelta f(t)\) exists, for any left dense point \(t_1\in {\mathbb {T}}\).

Definition 21

(see Bohner and Peterson 2001.) A function \(f: {\mathbb {T}}\rightarrow {\mathbb {R}}\) is said to be regressive, if \(1 + (\sigma (t)-t) f(t) \ne 0\), for all \(t\in {\mathbb {T}}\).

The generalized exponential function is defined as solutions of initial valued problems on time scales.

Definition 22

(see Bohner and Peterson 2001.) Let \(p:{\mathbb {T}}\rightarrow \mathbb {R}\) be a rd-continuous and regressive function, and \(t\in {\mathbb {T}}\). The unique solution, say \(u:{\mathbb {T}}\rightarrow \mathbb {R}\), of the problem,

$$\begin{aligned} {\left\{ \begin{array}{ll} u^{\varDelta }(s)= p(s) u(s), s \in {\mathbb {T}}, \\ u(t) =1. \end{array}\right. } \end{aligned}$$
(18)

is defined as a generalized exponential function. It is denoted by \(e_p(s,t)\).

In Table 1, one can see the generalized exponential function in particular time scales.

Table 1 Exponential functions in particular time scales

Moreover, let us note that the generalized exponential function \(e_p(s,t)\), defined in Definition 22, is a unary function with variable \(s\in {\mathbb {T}}\). It depends on the given function p and a constant \(t\in {\mathbb {T}}\). However, when dealing with t as a variable in \({\mathbb {T}}\), one can consider \(e_p(s,t)\) as a binary function on \({\mathbb {T}}\times {\mathbb {T}}\).

In what follows, we recall fundamental properties of the generalized exponential functions that are considered as binary functions on time scales:

Lemma 29

(see Bohner and Peterson 2001.) Let \(e_p(s,t)\) be the generalized exponential function on time scale \({\mathbb {T}}\times {\mathbb {T}}\). The following statements hold:

i):

\(e_0(s,t) =1\) and \( e_p(s,s) = 1\).

ii):

\(e_p(\sigma (s),t) = (1 + \mu (s)p(s)) e_p(s,t).\)

iii):

\(e_p(s,t) =\frac{1}{e_p(t,s)}.\)

iv):

\((e_p(s,t))^{\varDelta }=-p(t)e_p (s,\sigma (t))\).

The further results on exponential functions can be found in Bohner and Georgiev (2016), Bohner and Peterson (2001) and the references there in.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, T., Nguyen, L. & Schneider, B. On the partial delta differentiability of fuzzy-valued functions via the generalized Hukuhara difference. Comp. Appl. Math. 40, 208 (2021). https://doi.org/10.1007/s40314-021-01596-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01596-2

Keywords

Mathematics Subject Classification

Navigation