Skip to main content
Log in

Stability and global dissipativity for neutral-type fuzzy genetic regulatory networks with mixed delays

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, the stability and global dissipativity for neutral-type fuzzy genetic regulatory networks (FGRNs) with mixed time delays are investigated. By using Lyapunov functional method and linear matrix inequalities (LMIs) techniques, new sufficient conditions ensuring the stability and global dissipativity of the considered system are given. Moreover, the globally attractive set and positive invariant set are also presented here. The derived criteria are of the form of LMI and they can be checked by the numerically effect Matlab LMI toolbox. Lastly, two numerical examples with its simulations are proposed to illustrate the effectiveness of the obtained results. The derived results of this article are new and complement many earlier works and the ideas of this work can be applied to investigate other similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MS, Gunasekaran N, Ahn CK, Shi P (2016) Sampled-data stabilization for fuzzy genetic regulatory networks with leakage delays. IEEE/ACM Transactions on computational biology and bioinformatics 15(1):271–285

    Article  Google Scholar 

  • Aouiti C, Sakthivel R, Touati F (2020) Global dissipativity of high-order Hopfield bidirectional associative memory neural networks with mixed delays. Neural Computing and Applications 32(14):10183–10197

    Article  Google Scholar 

  • Aouiti C, Sakthivel R, Touati F (2020) Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays. International Journal of Systems Science 51(14):1392–1405

    Article  MathSciNet  Google Scholar 

  • Aouiti C, Sakthivel R, Touati F (2021) Global dissipativity of fuzzy bidirectional associative memory neural networks with proportional delays. Iranian Journal of Fuzzy Systems 18(2):65–80

    MathSciNet  MATH  Google Scholar 

  • Aouiti C, Dridi F (2020) Delayed fuzzy genetic regulatory networks: novel results. Int J Biomath. https://doi.org/10.1142/S1793524521500285

  • Cao J, Ren F (2008) Exponential stability of discrete-time genetic regulatory networks with delays. IEEE Transactions on Neural Networks 19(3):520–523

    Article  Google Scholar 

  • Cao Y, Samidurai R, Sriraman R (2019) Stability and dissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays. Journal of Artificial Intelligence and Soft Computing Research 9(2):189–204

    Article  Google Scholar 

  • Ding X, Li H, Li X, Sun W (2018) Stability analysis of Boolean networks with stochastic function perturbations. IEEE Access 7:1323–1329

    Article  Google Scholar 

  • Duan L, Di F, Wang Z (2020) Existence and global exponential stability of almost periodic solutions of genetic regulatory networks with time-varying delays. Journal of Experimental & Theoretical Artificial Intelligence 32(3):453–463

    Article  Google Scholar 

  • He W, Cao J (2008) Robust stability of genetic regulatory networks with distributed delay. Cognitive Neurodynamics 2(4):355–361

    Article  Google Scholar 

  • Hu J, Liang J, Cao J (2015) Stabilization of genetic regulatory networks with mixed time-delays: an adaptive control approach. IMA Journal of Mathematical Control and Information 32(2):343–358

    Article  MathSciNet  Google Scholar 

  • Li P, Lam J (2010) Disturbance analysis of nonlinear differential equation models of genetic SUM regulatory networks. IEEE/ACM transactions on computational biology and bioinformatics 8(1):253–259

    Google Scholar 

  • Ma Y, Zhang Q, Li X (2020) Dissipative Control of Markovian Jumping Genetic Regulatory Networks with Time-Varying Delays and Reaction-Diffusion Driven by Fractional Brownian Motion. Differential Equations and Dynamical Systems 28(4):841–864

    Article  MathSciNet  Google Scholar 

  • Manivannan R, Cao Y (2018) Design of generalized dissipativity state estimator for static neural networks including state time delays and leakage delays. Journal of the Franklin Institute 355(9):3990–4014

    Article  MathSciNet  Google Scholar 

  • Plahte E, Gjuvsland AB, Omholt SW (2013) Propagation of genetic variation in gene regulatory networks. Phys D Nonlinear Phenom 256: 7–20. https://doi.org/10.1016/j.physd.2013.04.002

  • Poblete CM, Parra FV, Gomez JB, Saldias MC, Garrido SS, Vargas HM (2009) Fuzzy logic in genetic regulatory network models. International Journal of Computers Communications & Control 4(4):363–373

    Article  Google Scholar 

  • Qiu, J., Sun, K., Yang, C., Chen, X., Chen, X., & Zhang, A. (2017). Finite-time stability of genetic regulatory networks with impulsive effects. Neurocomputing, 219, 9–14

    Article  Google Scholar 

  • Rakkiyappan R, Balasubramaniam P, Balachandran K (2011) Delay-dependent global asymptotic stability criteria for genetic regulatory networks with time delays in the leakage term. Physica Scripta 84(5):055007

  • Ram R, Chetty M, Dix TI (2006) Fuzzy model for gene regulatory network. In: 2006 IEEE International Conference on Evolutionary Computation (pp. 1450–1455). IEEE

  • Ratnavelu K, Kalpana M, Balasubramaniam P (2018) Stability analysis of fuzzy genetic regulatory networks with various time delays. Bulletin of the Malaysian Mathematical Sciences Society 41(1):491–505

    Article  MathSciNet  Google Scholar 

  • Sakthivel R, Mathiyalagan K, Lakshmanan S, Park JH (2013) Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties. Nonlinear dynamics 74(4):1297–1315

    Article  MathSciNet  Google Scholar 

  • Sakthivel R, Joby M, Wang C, Kaviarasan B (2018) Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults. Applied Mathematics and Computation 332:425–436

    MathSciNet  MATH  Google Scholar 

  • Selvi, S., Sakthivel, R., & Mathiyalagan, K. (2016). Robust sampled-data control of uncertain switched neutral systems with probabilistic input delay. Complexity, 21(5), 308–318

    Article  MathSciNet  Google Scholar 

  • Selvi, S., Sakthivel, R., & Mathiyalagan, K. (2016). Delay-dependent robust reliable control for uncertain switched neutral systems. Complexity, 21(5), 224–237

    Article  MathSciNet  Google Scholar 

  • Senthilraj, S., Raja, R., Zhu, Q., Samidurai, R., & Zhou, H. (2016). Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations. Neurocomputing, 214, 981–990

    Article  Google Scholar 

  • Shen H, Huo S, Yan H, Park JH, Sreeram V (2019) Distributed dissipative state estimation for Markov jump genetic regulatory networks subject to round-robin scheduling. IEEE transactions on neural networks and learning systems 31(3):762–771

    Article  MathSciNet  Google Scholar 

  • Vasic B, Ravanmehr V, Krishnan AR (2011) An information theoretic approach to constructing robust Boolean gene regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(1):52–65

    Article  Google Scholar 

  • Wang Z, Liao X, Mao J, Liu G (2009) Robust stability of stochastic genetic regulatory networks with discrete and distributed delays. Soft Computing 13(12):1199–1208

    Article  Google Scholar 

  • Wang H, Qian L, Dougherty E (2010) Inference of gene regulatory networks using S-system: a unified approach. IET systems biology 4(2):145–156

    Article  Google Scholar 

  • Wang W, Zhong S, Liu F, Cheng J (2014) Robust delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with random discrete delays and distributed delays. International Journal of Robust and Nonlinear Control 24(16):2574–2596

    Article  MathSciNet  Google Scholar 

  • Wang L, Dong Y, Xie D, Cao J (2020) Global Dissipativity for Stochastic Genetic Regulatory Networks With Time-Delays. IEEE Access 8:34880–34887

    Article  Google Scholar 

  • Xu, C., Aouiti, C., & Liu, Z. (2020). A further study on bifurcation for fractional order BAM neural networks with multiple delays. Neurocomputing, 417, 501–515

    Article  Google Scholar 

  • Xu C, Liao M, Li P, Guo Y, Liu Z (2021) Bifurcation properties for fractional order delayed BAM neural networks. Cognitive Computation 13(2):322–356

    Article  Google Scholar 

  • Xu C, Liao M, Li P, Liu Z, Yuan S (2021) New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays. Fuzzy Sets and Systems 411:25–47

    Article  MathSciNet  Google Scholar 

  • Xue, Y., Zhang, L., & Zhang, X. (2020). Reachable set estimation for genetic regulatory networks with time-varying delays and bounded disturbances. Neurocomputing, 403, 203–210

    Article  Google Scholar 

  • Yu T, Liu J, Zeng Q, Wu L (2021) Dissipativity-based filtering for switched genetic regulatory networks with stochastic disturbances and time-varying delays. IEEE/ACM transactions on computational biology and bioinformatics 18(3):1082–1092

    Article  Google Scholar 

  • Zhang, W., Fang, J. A., & Tang, Y. (2011). New robust stability analysis for genetic regulatory networks with random discrete delays and distributed delays. Neurocomputing, 74(14–15), 2344–2360

    Article  Google Scholar 

  • Zhang X, Wu L, Cui S (2014) An improved integral inequality to stability analysis of genetic regulatory networks with interval time-varying delays. IEEE/ACM transactions on computational biology and bioinformatics 12(2):398–409

    Article  Google Scholar 

  • Zhang X, Wu L, Zou J (2015) Globally asymptotic stability analysis for genetic regulatory networks with mixed delays: an M-matrix-based approach. IEEE/ACM transactions on computational biology and bioinformatics 13(1):135–147

    Article  Google Scholar 

  • Zhang L, Zhang X, Xue Y, Zhang X (2020) New Method to Global Exponential Stability Analysis for Switched Genetic Regulatory Networks With Mixed Delays. IEEE Transactions on NanoBioscience 19(2):308–314

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti.

Additional information

Communicated by Marcos Eduardo Valle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Theorem 1

Proof

Consider the following Lyapunov functional:

$$\begin{aligned} V_{1}(t)=\displaystyle \sum _{i=1}^{4}V_{1i}(t) \end{aligned}$$
(9)

where

$$\begin{aligned} V_{11}(t)= & {} \displaystyle \sum _{i=1}^{n}x_{i}(t)p_{i}x_{i}(t)+\displaystyle \sum _{i=1}^{n}y_{i}(t)q_{i}y_{i}(t),\\ V_{12}(t)= & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}\int _{t-\tau (t)}^{t}g^{2}_{j}\big (y_{j}(s)\big )\mathrm{d}s+ \displaystyle \sum _{j=1}^{n}r^{2}_{ij}\int _{t-\rho (t)}^{t}g^{2}_{j}\big ({\dot{y}}_{j}(s)\big )\mathrm{d}s,\\ V_{13}(t)= & {} \displaystyle \sum _{j=1}^{n}\int _{t-\sigma (t)}^{t}\int _{s}^{t}g_{j}\big (y_{j}(s_{1})\big )w_{ij}g_{j}\big (y_{j}(s_{1})\big )\mathrm{d}s_{1}\mathrm{d}s\\&+\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\int _{t-\eta (t)}^{t}\int _{s}^{t}x^{2}_{i}(s_{1})\mathrm{d}s_{1}\mathrm{d}s,\\ V_{14}(t)= & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}\int _{t-\mu (t)}^{t}x_{i}^{2}(s)\mathrm{d}s+ \displaystyle \sum _{j=1}^{n}m^{3}_{ij}\int _{t-h(t)}^{t}{\dot{x}}^{2}_{j}(s)\mathrm{d}s. \end{aligned}$$

Calculating the time-derivative of \(V_{1}(\cdot )\) along the solution of system (3) and by using Lemma 1 we have:

$$\begin{aligned} {\dot{V}}_{11}(t)= & {} 2\displaystyle \sum _{i=1}^{n}x_i(t)p_{i}\big [-b_ix_i(t)+\displaystyle \sum _{j=1}^{n}c_{ij}g_j(y_j(t-\tau (t)))+\displaystyle \bigwedge _{j=1}^{n}\gamma _{ij}g_{j}(y_j(t-\tau (t)))\\&+\displaystyle \bigvee _{j=1}^{n}\delta _{ij}g_{j}(y_j(t-\tau (t))) +\displaystyle \bigwedge _{j=1}^{n}\alpha _{ij}\int _{t-\sigma (t)}^{t}g_j(y_j(s))\mathrm{d}s\\&+\displaystyle \bigvee _{j=1}^{n}\beta _{ij}\int _{t-\sigma (t)}^{t}g_j(y_j(s))\mathrm{d}s+\displaystyle \sum _{j=1}^{n}d_{ij}g_j({\dot{y}}_j(t-\rho (t)))\big ]\\&+2\displaystyle \sum _{i=1}^{n}y_i(t)q_{i}\big [-a_iy_i(t)+e_{i}x_i(t-\mu (t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\gamma }}_{ij}x_{j}(t-\mu (t))\\&+\displaystyle \bigvee _{j=1}^{n}{\bar{\delta }}_{ij}x_{i}(t-\mu (t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\alpha }}_{ij}\int _{t-\eta (t)}^{t}x_j(s)\mathrm{d}s+\displaystyle \bigvee _{j=1}^{n}{\bar{\beta }}_{ij}\int _{t-\eta (t)}^{t}x_{j}(s)\mathrm{d}s\\&+{\bar{d}}_{i}{\dot{x}}_i(t-h(t))]\\\le & {} -2\displaystyle \sum _{i=1}^{n}x_i(t)p_{i}b_ix_i(t)+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}y_i(t)p_{i}[c_{ij}+|\gamma _{ij}|+|\delta _{ij}|]|g_j(y_j(t-\tau (t)))|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}x_i(t)p_{i}[|\alpha _{ij}|+|\beta _{ij}|]|\int _{t-\sigma (t)}^{t}g_j(y_j(s))\mathrm{d}s|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}x_i(t)p_{i}d_{ij}g_j({\dot{y}}_j(t-\rho (t)))\\&-2\displaystyle \sum _{i=1}^{n}y_i(t)q_{i}a_iy_i(t)+2\displaystyle \sum _{i=1}^{n}y_i(t)q_{i}[e_{i}+|{\bar{\gamma }}_{ij}|+|{\bar{\delta }}_{ij}|]|x_i(t-\mu (t))|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}y_i(t)q_{i}[|{\bar{\alpha }}_{ij}|+|{\bar{\beta }}_{ij}|]|\int _{t-\eta (t)}^{t}x_j(s)\mathrm{d}s|+ 2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}y_i(t)q_{i}{\bar{d}}_{i}{\dot{x}}_i(t-h(t))\\\le & {} -2x^{T}(t)PBx(t)+2x^{T}(t)P[C+|\gamma |+|\delta |]|g(y(t-\tau (t)))|\\&+2x^{T}(t)P[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|g(y(s))|\mathrm{d}s+x^{T}(t)PDg({\dot{y}}(t-\rho (t)))\\&-2y^{T}(t)QAy(t)+2y^{T}(t)Q[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|x(t-\mu (t))|\\&+2y^{T}(t)Q[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s+2y^{T}(t)Q{\bar{D}}{\dot{x}}(t-h(t)),\\ {\dot{V}}_{12}(t)= & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}g^{2}_{j}\big (y_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\dot{\tau }}(t))r^{1}_{ij}g^{2}_{j}\big (y_{j}(t-\tau (t))\big )\\&+\displaystyle \sum _{j=1}^{n}r^{2}_{ij}g^{2}_{j}\big ({\dot{y}}_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\dot{\rho }}(t))r^{2}_{ij}g^{2}_{j}\big ({\dot{y}}_{j}(t-\rho (t))\big )\\\le & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}g^{2}_{j}\big (y_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\tau }})r^{1}_{ij}g^{2}_{j}\big (y_{j}(t-\tau (t))\big )\\&+\displaystyle \sum _{j=1}^{n}r^{2}_{ij}g^{2}_{j}\big ({\dot{y}}_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\rho }})r^{2}_{ij}g^{2}_{j}\big ({\dot{y}}_{j}(t-\rho (t))\big )\\= & {} g^{T}\big (y(t)\big )R_{1}g\big (y(t)\big )-(1-{\tilde{\tau }})g^{T}\big (y(t-\tau (t))\big )R_{1}g\big (y(t-\tau (t))\big )\\&+g^{T}\big ({\dot{y}}(t)\big )R_{2}g\big ({\dot{y}}(t)\big )-(1-{\tilde{\rho }})g^{T}\big ({\dot{y}}(t-\rho (t))\big )R_{2}g\big ({\dot{y}}(t-\rho (t))\big )\\\le & {} g^{T}\big (y(t)\big )R_{1}g\big (y(t)\big )-(1-{\tilde{\tau }})g^{T}\big (y(t-\tau (t))\big )R_{1}g\big (y(t-\tau (t))\big )\\&+{\dot{y}}^{T}(t)G^{+}R_{2}G^{+}{\dot{y}}(t)-(1-{\tilde{\rho }})g^{T}\big ({\dot{y}}(t-\rho (t))\big )R_{2}g\big ({\dot{y}}(t-\rho (t))\big ),\\ \end{aligned}$$
$$\begin{aligned} {\dot{V}}_{13}(t)= & {} \displaystyle \sum _{j=1}^{n}\sigma (t)g_{j}\big (y_{j}(t)\big )w_{ij}g_{j}\big (y_{j}(t)\big ) -\displaystyle \sum _{j=1}^{n}\int _{t-\sigma (t)}^{t}g_{j}\big (y_{j}(s)\big )w_{ij}g_{j}\big (y_{j}(s)\big )\mathrm{d}s\\&+\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\eta (t)x^{2}_{i}(t) -\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\int _{t-\eta (t)}^{t}x^{2}_{i}(s)\mathrm{d}s\\\le & {} \sigma ^{*}g^{T}\big (y(t)\big )Wg\big (y(t)\big ) -\bigg (\displaystyle \int _{t-\sigma (t)}^{t}g\big (y(s)\big )\mathrm{d}s\bigg )^{T}W\bigg (\displaystyle \int _{t-\sigma (t)}^{t}g\big (y(s)\big )\mathrm{d}s\bigg )\\&+\eta ^{*}x^{T}(t)M_{1}x(t) -\bigg (\displaystyle \int _{t-\eta (t)}^{t}x(s)\mathrm{d}s\bigg )^{T}M_{1}\bigg (\displaystyle \int _{t-\eta (t)}^{t}x(s)\mathrm{d}s\bigg ),\\ {\dot{V}}_{14}(t)= & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}x_{i}^{2}(t)-\displaystyle \sum _{j=1}^{n}(1-{\dot{\mu }}(t))m^{2}_{ij}x_{i}^{2}(t-\mu (t)) +\displaystyle \sum _{i=1}^{n}m^{3}_{ij}{\dot{x}}^{2}_{i}(t)\\&-\displaystyle \sum _{i=1}^{n}m^{3}_{ij}(1-{\dot{h}}(t)){\dot{x}}^{2}_{i}(t-h(t))\\\le & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}x_{i}^{2}(t)-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\mu }})m^{2}_{ij}x_{i}^{2}(t-\mu (t)) +\displaystyle \sum _{i=1}^{n}m^{3}_{ij}{\dot{x}}^{2}_{i}(t)\\&-\displaystyle \sum _{i=1}^{n}m^{3}_{ij}(1-{\tilde{h}}){\dot{x}}^{2}_{i}(t-h(t))\\= & {} x^{T}(t)M_{2}x(t)-(1-{\tilde{\mu }})x^{T}(t-\mu (t))M_{2}x(t-\mu (t)) +{\dot{x}}^{T}(t)M_{3}{\dot{x}}(t)\\&-(1-{\tilde{h}}){\dot{x}}^{T}(t-h(t))M_{3}{\dot{x}}(t-h(t)). \end{aligned}$$

Under the Assumption 3. the following inequality holds for any positive matrix \(\vartheta =(\vartheta _{ij})_{n\times n}\):

$$\begin{aligned} -g^{T}(y(t))\vartheta g(y(t))+y^{T}(t)G^{+}\vartheta G^{+}y(t)\ge 0. \end{aligned}$$

By using the Lemma 1 the following two inequalities are true

$$\begin{aligned} {\dot{x}}_i(t)= & {} -b_ix_i(t)+\displaystyle \sum _{j=1}^{n}c_{ij}g_j(y_j(t-\tau (t)))+\displaystyle \bigwedge _{j=1}^{n}\gamma _{ij}g_{j}(y_j(t-\tau (t)))\\&+\displaystyle \bigvee _{j=1}^{n}\delta _{ij}g_{j}(y_j(t-\tau (t))) +\displaystyle \bigwedge _{j=1}^{n}\alpha _{ij}\int _{t-\sigma (t)}^{t}g_j(y_j(s))\mathrm{d}s\\&+\displaystyle \bigvee _{j=1}^{n}\beta _{ij}\int _{t-\sigma (t)}^{t}g_j(y_j(s))\mathrm{d}s+\displaystyle \sum _{j=1}^{n}d_{ij}g_j({\dot{y}}_j(t-\rho (t)))\\\le & {} -Bx(t)+[C+|\gamma |+|\delta |]|g(y(t-\tau (t)))|+[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|g(y(s))|\mathrm{d}s\\&+Dg({\dot{y}}(t-\rho (t))),\\ \end{aligned}$$

and

$$\begin{aligned} {\dot{y}}_i(t)= & {} -a_iy_i(t)+e_{i}x_i(t-\mu _{i}(t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\gamma }}_{ij}x_{j}(t-\mu (t))+\displaystyle \bigvee _{j=1}^{n}{\bar{\delta }}_{ij}x_{j}(t-\mu (t))\\&+\displaystyle \bigwedge _{j=1}^{n}{\bar{\alpha }}_{ij}\int _{t-\eta (t)}^{t}x_j(s)\mathrm{d}s +\displaystyle \bigvee _{j=1}^{n}{\bar{\beta }}_{ij}\int _{t-\eta (t)}^{t}x_{j}(s)\mathrm{d}s+{\bar{d}}_{i}{\dot{x}}_i(t-h(t)\\\le & {} -Ay(t)+[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|x(t-\mu (t))| +[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s\\&+{\bar{D}}{\dot{x}}(t-h(t)), \end{aligned}$$

Therefore, for any positive matrix \(N_{1}=(n^{1}_{ij})_{n\times n}\) and \(N_{2}=(n^{2}_{ij})_{n\times n}:\)

$$\begin{aligned}&\big [2|{\dot{x}}(t)|^{T}N_{1}\big ]\big [-{\dot{x}}(t)-Bx(t)+[C+|\gamma |+|\delta |]|g(y(t-\tau (t)))|\\&\quad +[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|g(y(s))|\mathrm{d}s+Dg({\dot{y}}(t-\rho (t)))\big ]\ge 0,\\&\big [2|{\dot{y}}(t)|^{T}N_{2}\big ]\big [-{\dot{y}}(t)-Ay(t)+[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|x(t-\mu (t))|\\&\quad +[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s\\&\quad +{\bar{D}}{\dot{x}}(t-h(t))\big ]\ge 0, \end{aligned}$$

which imply,

$$\begin{aligned} {\dot{V}}_{1}(t)\le & {} x^{T}(t)[-2PB+\eta ^{*}M_{1}+M_{2}]x(t)+2x^{T}(t)P(C+|\gamma |+|\delta |)|g(y(t-\tau (t)))|\\&+2x^{T}(t)P(|\alpha |+|\beta |)\int _{t-\sigma (t)}^{t}|g(y(s))|\mathrm{d}s+2x^{T}(t)PDg({\dot{y}}(t-\rho (t)))\\&+y^{T}(t)[-2QA+G^{+}\vartheta G^{+}]y(t) +2y^{T}(t)Q[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|x(t-\mu (t))|\\&+2y^{T}(t)Q[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s+2y^{T}(t)Q{\bar{D}}{\dot{x}}(t-h(t))\\&+g^{T}\big (y(t)\big )[R_{1}+\sigma ^{*}W-\vartheta ]g\big (y(t)\big )-(1-{\tilde{\tau }})g^{T}\big (y(t-\tau (t))\big )R_{1}g\big (y(t-\tau (t))\big )\\&+|{\dot{y}}(t)|^{T}(G^{+}R_{2}G^{+}-2N_{2})|{\dot{y}}(t)|-(1-{\tilde{\rho }})g^{T}\big ({\dot{y}}(t-\rho (t))\big )R_{2}g\big ({\dot{y}}(t-\rho (t))\big )\\&-\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|g\big (y(s)\big )|\mathrm{d}s\bigg )^{T}W\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|g\big (y(s)\big )|\mathrm{d}s\bigg )\\&-\bigg (\displaystyle \int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s\bigg )^{T}M_{1}\bigg (\displaystyle \int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s\bigg )\\&-(1-{\tilde{\mu }})|x(t-\mu (t))|^{T}M_{2}|x(t-\mu (t))|+|{\dot{x}}(t)|^{T}(M_{3}-2N_{1})|{\dot{x}}(t)|\\&-(1-{\tilde{h}}){\dot{x}}^{T}(t-h(t))M_{3}{\dot{x}}(t-h(t)) -2|{\dot{x}}(t)|^{T}N_{1}Bx(t)\\&+2|{\dot{x}}(t)|^{T}N_{1}[C+|\gamma |+|\delta |]|g(y(t-\tau (t)))|\\&+2|{\dot{x}}(t)|^{T}N_{1}[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|g(y(s))|\mathrm{d}s\\&+2|{\dot{x}}(t)|^{T}N_{1}Dg({\dot{y}}(t-\rho (t)))-2 |{\dot{y}}(t)|^{T}N_{2}Ay(t)\\&+2|{\dot{y}}(t)|^{T}N_{2}[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|x(t-\mu (t))|\\&+2|{\dot{y}}(t)|^{T}N_{2}[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s +2|{\dot{y}}(t)|^{T}N_{2}{\bar{D}}{\dot{x}}(t-h(t))\\\le & {} \Gamma ^{T}(t)\Sigma _{1}\Gamma (t), \end{aligned}$$

where,

$$\begin{aligned}&\Gamma ^{T}(t)=\bigg [x^{T}(t),\;g^{T}\big (y(t)\big ),\;|g\big (y(t-\tau (t))\big )|^{T},\;\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|g\big (y(s)\big )|\mathrm{d}s\bigg )^{T},\\&\quad g^{T}\big ({\dot{y}}(t-\rho (t))\big ),\;|{\dot{x}}(t)|^{T},\;y^{T}(t),\;|x(t-\mu (t))|^{T},\;\bigg (\displaystyle \int _{t-\eta (t)}^{t}|x(s)|\mathrm{d}s\bigg )^{T},\\&\quad {\dot{x}}^{T}(t-h(t)),\;|{\dot{y}}(t)|^{T}\bigg ]^{T}. \end{aligned}$$

If the condition \(\Sigma _{1}<0\) holds, then \({\dot{V}}_{1}(t)<0.\) Therefore, the neutral-type FGRNs with mixed delays (3) is asymptotically stable. \(\square \)

Appendix B (Proof of Theorem 2)

Proof

Consider the following Lyapunov functional:

$$\begin{aligned} V_{2}(t)=\displaystyle \sum _{i=1}^{4}V_{2i}(t) \end{aligned}$$
(10)

where

$$\begin{aligned} V_{21}(t)= & {} \displaystyle \sum _{i=1}^{n}\zeta _{i}(t)p_{i}\zeta _{i}(t)+\displaystyle \sum _{i=1}^{n}\xi _{i}(t)q_{i}\xi _{i}(t),\\ V_{22}(t)= & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}\int _{t-\tau (t)}^{t}f^{2}_{j}\big (\xi _{j}(s)\big )\mathrm{d}s+ \displaystyle \sum _{j=1}^{n}r^{2}_{ij}\int _{t-\rho (t)}^{t}f^{2}_{j}\big ({\dot{\xi }}_{j}(s)\big )\mathrm{d}s,\\ V_{23}(t)= & {} \displaystyle \sum _{j=1}^{n}\int _{t-\sigma (t)}^{t}\int _{s}^{t}f_{j}\big (\xi _{j}(s_{1})\big )w_{ij}f_{j}\big (\xi _{j}(s_{1})\big )\mathrm{d}s_{1}\mathrm{d}s\\&+\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\int _{t-\eta (t)}^{t}\int _{s}^{t}\zeta ^{2}_{i}(s_{1})\mathrm{d}s_{1}\mathrm{d}s,\\ V_{24}(t)= & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}\int _{t-\mu (t)}^{t}\zeta _{i}^{2}(s)\mathrm{d}s+ \displaystyle \sum _{j=1}^{n}m^{3}_{ij}\int _{t-h(t)}^{t}{\dot{\zeta }}^{2}_{j}(s)\mathrm{d}s. \end{aligned}$$

Calculating the time-derivative of \(V_{2}(\cdot )\) along the solution of system (1) and by using Lemma 1 we have:

$$\begin{aligned} {\dot{V}}_{21}(t)= & {} 2\displaystyle \sum _{i=1}^{n}\zeta _i(t)p_{i}\big [-b_i\zeta _i(t)+\displaystyle \sum _{j=1}^{n}c_{ij}f_j(\xi _j(t-\tau (t)))+\displaystyle \bigwedge _{j=1}^{n}\gamma _{ij}f_{j}(\xi _j(t-\tau (t)))\\&+\displaystyle \bigvee _{j=1}^{n}\delta _{ij}f_{j}(\xi _j(t-\tau (t))) +\displaystyle \bigwedge _{j=1}^{n}\alpha _{ij}\int _{t-\sigma (t)}^{t}f_j(\xi _j(s))\mathrm{d}s\\&+\displaystyle \bigvee _{j=1}^{n}\beta _{ij}\int _{t-\sigma (t)}^{t}f_j(\xi _j(s))\mathrm{d}s+\displaystyle \sum _{j=1}^{n}d_{ij}f_j\dot{(\xi }_j(t-\rho (t)))+\pi _{i}(t)\big ]\\&+2\displaystyle \sum _{i=1}^{n}\xi _i(t)q_{i}\big [-a_i\xi _i(t)+e_{i}\zeta _i(t-\mu (t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\gamma }}_{ij}\zeta _{j}(t-\mu (t))\\&+\displaystyle \bigvee _{j=1}^{n}{\bar{\delta }}_{ij}\zeta _{i}(t-\mu (t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\alpha }}_{ij}\int _{t-\eta (t)}^{t}\zeta _j(s) \mathrm{d}s+\displaystyle \bigvee _{j=1}^{n}{\bar{\beta }}_{ij}\int _{t-\eta (t)}^{t}\zeta _{j}(s)\mathrm{d}s\\&+{\bar{d}}_{i}{\dot{\zeta }}_i(t-h(t))]\\\le & {} -2\displaystyle \sum _{i=1}^{n}\zeta _i(t)p_{i}b_i\zeta _i(t)+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}\zeta _i(t)p_{i}[c_{ij}+|\gamma _{ij}|+|\delta _{ij}|]|f_j(\xi _j(t-\tau (t)))|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}\zeta _i(t)p_{i}[|\alpha _{ij}|+|\beta _{ij}|]|\int _{t-\sigma (t)}^{t}f_j(\xi _j(s))\mathrm{d}s|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}\zeta _i(t)p_{i}d_{ij}f_j({\dot{\xi }}_j(t-\rho (t)))+2\displaystyle \sum _{i=1}^{n}\zeta _i(t)p_{i}\pi _{i}(t)\\&-2\displaystyle \sum _{i=1}^{n}\xi _i(t)q_{i}a_i\xi _i(t)+2\displaystyle \sum _{i=1}^{n}\xi _i(t)q_{i}[e_{i}+|{\bar{\gamma }}_{ij}|+|{\bar{\delta }}_{ij}|]|\zeta _i(t-\mu (t))|\\&+2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}\xi _i(t)q_{i}[|{\bar{\alpha }}_{ij}|+|{\bar{\beta }}_{ij}|]|\int _{t-\eta (t)}^{t}\zeta _j(s)\mathrm{d}s|+ 2\displaystyle \sum _{i=1}^{n}\displaystyle \sum _{j=1}^{n}\xi _i(t)q_{i}{\bar{d}}_{i}{\dot{\zeta }}_i(t-h_(t))\\\le & {} -2\zeta ^{T}(t)PB\zeta (t)+2\zeta ^{T}(t)P[C+|\gamma |+|\delta |]|f(\xi (t-\tau (t)))|\\&+2\zeta ^{T}(t)P[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|f(\xi (s))|\mathrm{d}s+\zeta ^{T}(t)PDf({\dot{\xi }}(t-\rho (t)))\\&+2\zeta ^{T}(t)P\pi (t)-2\xi ^{T}(t)QA\xi (t)+2\xi ^{T}(t)Q[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|\zeta (t-\mu (t))|\\&+2\xi ^{T}(t)Q[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s+2\xi ^{T}(t)Q{\bar{D}}{\dot{\zeta }}(t-h(t)),\\ {\dot{V}}_{22}(t)= & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}f^{2}_{j}\big (\xi _{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\dot{\tau }}_{j}(t))r^{1}_{ij}f^{2}_{j}\big (\xi _{j}(t-\tau _{j}(t))\big )\\&+\displaystyle \sum _{j=1}^{n}r^{2}_{ij}f^{2}_{j}\big ({\dot{\xi }}_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\dot{\rho }}_{j}(t))r^{2}_{ij}f^{2}_{j}\big ({\dot{\xi }}_{j}(t-\rho _{j}(t))\big )\\\le & {} \displaystyle \sum _{j=1}^{n}r^{1}_{ij}f^{2}_{j}\big (\xi _{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\tau }})r^{1}_{ij}f^{2}_{j}\big (\xi _{j}(t-\tau _{j}(t))\big )\\&+\displaystyle \sum _{j=1}^{n}r^{2}_{ij}f^{2}_{j}\big ({\dot{\xi }}_{j}(t)\big )-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\rho }})r^{2}_{ij}f^{2}_{j}\big ({\dot{\xi }}_{j}(t-\rho _{j}(t))\big )\\= & {} f^{T}\big (\xi (t)\big )R_{1}f\big (\xi (t)\big )-(1-{\tilde{\tau }})f^{T}\big (\xi (t-\tau (t))\big )R_{1}f\big (\xi (t-\tau (t))\big )\\&+f^{T}\big ({\dot{\xi }}(t)\big )R_{2}f\big ({\dot{\xi }}(t)\big )-(1-{\tilde{\rho }})f^{T}\big ({\dot{\xi }}(t-\rho (t))\big )R_{2}f\big ({\dot{\xi }}(t-\rho (t))\big )\\\le & {} f^{T}\big (\xi (t)\big )R_{1}f\big (\xi (t)\big )-(1-{\tilde{\tau }})f^{T}\big (\xi (t-\tau (t))\big )R_{1}f\big (\xi (t-\tau (t))\big )\\&+{\dot{\xi }}^{T}(t)F^{+}R_{2}F^{+}{\dot{\xi }}(t)-(1-{\tilde{\rho }})f^{T}\big ({\dot{\xi }}(t-\rho (t))\big )R_{2}f\big ({\dot{\xi }}(t-\rho (t))\big ),\\ \end{aligned}$$
$$\begin{aligned} {\dot{V}}_{23}(t)= & {} \displaystyle \sum _{j=1}^{n}\sigma (t)f_{j}\big (\xi _{j}(t)\big )w_{ij}f_{j}\big (\xi _{j}(t)\big ) -\displaystyle \sum _{j=1}^{n}\int _{t-\sigma (t)}^{t}f_{j}\big (\xi _{j}(s)\big )w_{ij}f_{j}\big (\xi _{j}(s)\big )\mathrm{d}s\\&+\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\eta (t)\zeta ^{2}_{i}(t) -\displaystyle \sum _{j=1}^{n}m^{1}_{ij}\int _{t-\eta (t)}^{t}\zeta ^{2}_{i}(s)\mathrm{d}s\\\le & {} \sigma ^{*}f^{T}\big (\xi (t)\big )Wf\big (\xi (t)\big ) -\bigg (\displaystyle \int _{t-\sigma (t)}^{t}f\big (\xi (s)\big )\mathrm{d}s\bigg )^{T}W\bigg (\displaystyle \int _{t-\sigma (t)}^{t}f\big (\xi (s)\big )\mathrm{d}s\bigg )\\&+\eta ^{*}\zeta ^{T}(t)M_{1}\zeta (t) -\bigg (\displaystyle \int _{t-\eta (t)}^{t}\zeta (s)\mathrm{d}s\bigg )^{T}M_{1}\bigg (\displaystyle \int _{t-\eta (t)}^{t}\zeta (s)\mathrm{d}s\bigg ),\\ {\dot{V}}_{24}(t)= & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}\zeta _{i}^{2}(t)-\displaystyle \sum _{j=1}^{n}(1-{\dot{\mu }}(t))m^{2}_{ij}\zeta _{i}^{2}(t-\mu (t)) +\displaystyle \sum _{i=1}^{n}m^{3}_{ij}{\dot{\zeta }}^{2}_{i}(t)\\&-\displaystyle \sum _{i=1}^{n}m^{3}_{ij}(1-{\dot{h}}(t)){\dot{\zeta }}^{2}_{i}(t-h(t))\\\le & {} \displaystyle \sum _{j=1}^{n}m^{2}_{ij}\zeta _{i}^{2}(t)-\displaystyle \sum _{j=1}^{n}(1-{\tilde{\mu }})m^{2}_{ij}\zeta _{i}^{2}(t-\mu (t)) +\displaystyle \sum _{i=1}^{n}m^{3}_{ij}{\dot{\zeta }}^{2}_{i}(t)\\&-\displaystyle \sum _{i=1}^{n}m^{3}_{ij}(1-{\tilde{h}}){\dot{\zeta }}^{2}_{i}(t-h(t))\\= & {} \zeta ^{T}(t)M_{2}\zeta (t)-(1-{\tilde{\mu }})\zeta ^{T}(t-\mu (t))M_{2}\zeta (t-\mu (t)) +{\dot{\zeta }}^{T}(t)M_{3}{\dot{\zeta }}(t)\\&-(1-{\tilde{h}}){\dot{\zeta }}^{T}(t-h(t))M_{3}{\dot{\zeta }}(t-h(t)). \end{aligned}$$

Under the Assumption 1, the following inequality holds for any positive matrix \(\chi =(\chi _{ij})_{n\times n}:\)

$$\begin{aligned} -f^{T}(\xi (t))\chi f(\xi (t))+\xi ^{T}(t)F^{+}\chi F^{+}\xi (t)\ge 0. \end{aligned}$$

By utilizing the lemma 1, the following two inequalities are true

$$\begin{aligned} {\dot{\zeta }}_i(t)= & {} -b_i\zeta _i(t)+\displaystyle \sum _{j=1}^{n}c_{ij}g_j(\xi _j(t-\tau _{j}(t))) +\displaystyle \bigwedge _{j=1}^{n}\gamma _{ij}f_{j}(\xi _j(t-\tau (t)))\\&+\displaystyle \bigvee _{j=1}^{n}\delta _{ij}f_{j}(\xi _j(t-\tau (t))) +\displaystyle \bigwedge _{j=1}^{n}\alpha _{ij}\int _{t-\sigma (t)}^{t}f_j(\xi _j(s))\mathrm{d}s\\&+\displaystyle \bigvee _{j=1}^{n}\beta _{ij}\int _{t-\sigma (t)}^{t}f_j(\xi _j(s))\mathrm{d}s +\displaystyle \sum _{j=1}^{n}d_{ij}f_j({\dot{\xi }}_j(t-\rho (t)))+\pi _{i}(t)\\\le & {} -B\zeta (t)+[C+|\gamma |+|\delta |]|f(\xi (t-\tau (t)))|+[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|f(\xi (s))|\mathrm{d}s\\&+Df({\dot{\xi }}(t-\rho (t)))+\pi (t), \end{aligned}$$

and

$$\begin{aligned} {\dot{\xi }}_i(t)= & {} -a_i\xi _i(t)+e_{i}\zeta _i(t-\mu (t)) +\displaystyle \bigwedge _{j=1}^{n}{\bar{\gamma }}_{ij}\zeta _{j}(t-\mu (t))+\displaystyle \bigvee _{j=1}^{n}{\bar{\delta }}_{ij}\zeta _{j}(t-\mu (t))\\&+\displaystyle \bigwedge _{j=1}^{n}{\bar{\alpha }}_{ij}\int _{t-\eta (t)}^{t}\zeta _j(s)\mathrm{d}s +\displaystyle \bigvee _{j=1}^{n}{\bar{\beta }}_{ij}\int _{t-\eta (t)}^{t}\zeta _{j}(s)\mathrm{d}s+{\bar{d}}_{i}{\dot{\zeta }}_i(t-h(t)\\\le & {} -A\xi (t)+[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|\zeta (t-\mu (t))| +[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\\&+{\bar{d}}{\dot{\zeta }}(t-h(t)), \end{aligned}$$

Therefore, for any positive diagonal matrix \(S_{1}=\text{ diag }\{s^{1},\cdots ,s^{n}\}\) and any positive matrix \(S_{2}=(s^{2}_{ij})_{n\times n},\) we have

$$\begin{aligned}&\big [2|{\dot{\zeta }}(t)|^{T}S_{1}\big ]\big [-{\dot{\zeta }}(t)-B\zeta (t)+[C+|\gamma |+|\delta |]|f(\xi (t-\tau (t)))|\\&\quad +[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|f(\xi (s))|\mathrm{d}s+Df({\dot{\xi }}(t-\rho (t)))+\pi (t)\big ]\ge 0,\\&\quad \big [2|{\dot{\xi }}(t)|^{T}S_{2}\big ]\big [-{\dot{\xi }}(t)-A\xi (t)+[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|\zeta (t-\mu (t))|\\&\quad +[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\\&\quad +{\bar{D}}{\dot{\zeta }}(t-h(t))\big ]\ge 0. \end{aligned}$$

By using lemma 2

$$\begin{aligned}&2\zeta ^{T}(t)P\pi (t)\le \zeta ^{T}(t)P\zeta (t)+\pi ^{T}(t)P\pi (t),\\&\quad 2|{\dot{\zeta }}(t)|^{T}S_{1}\pi (t)\le |{\dot{\zeta }}(t)|^{T}S_{1}|{\dot{\zeta }}(t)|+\pi ^{T}(t)S_{1}\pi (t), \end{aligned}$$

which imply,

$$\begin{aligned} {\dot{V}}_{2}(t)\le & {} \zeta ^{T}(t)[-2PB+\eta ^{*}M_{1}+M_{2}+P+J_{1}]\zeta (t)\\&+2\zeta ^{T}(t)P(C+|\gamma |+|\delta |)|f(\xi (t-\tau (t)))|\\&+2\zeta ^{T}(t)P(|\alpha |+|\beta |)\int _{t-\sigma (t)}^{t}|f\xi (s))|\mathrm{d}s+2\zeta ^{T}(t)PDf({\dot{\xi }}(t-\rho (t)))\\&+\xi ^{T}(t)[-2QA+G^{+}\chi G^{+}+J_{2}]\xi (t)\\&+2\xi ^{T}(t)Q[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|\zeta (t-\mu (t))| +2\xi ^{T}(t)Q[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\\&+2\xi ^{T}(t)Q{\bar{D}}{\dot{\zeta }}(t-h(t))+f^{T}\big (\xi (t)\big )[R_{1}+\sigma ^{*}W-\chi ]f\big (\xi (t)\big )\\&-(1-{\tilde{\tau }})f^{T}\big (\xi (t-\tau (t))\big )R_{1}f\big (\xi (t-\tau (t))\big ) +|{\dot{\xi }}(t)|^{T}(F^{+}R_{2}F^{+}-2S_{2})|{\dot{\xi }}(t)|\\&-(1-{\tilde{\rho }})f^{T}\big ({\dot{\xi }}(t-\rho (t))\big )R_{2}f\big ({\dot{\xi }}(t-\rho (t))\big )\\&-\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|f\big (\xi (s)\big )|\mathrm{d}s\bigg )^{T}W\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|f\big (\xi (s)\big )|\mathrm{d}s\bigg )\\&-\bigg (\displaystyle \int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\bigg )^{T}M_{1}\bigg (\displaystyle \int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\bigg )\\&-(1-{\tilde{\mu }})|\zeta (t-\mu (t))|^{T}M_{2}|\zeta (t-\mu (t))|+|{\dot{\zeta }}(t)|^{T}(M_{3}-S_{1})|{\dot{\zeta }}(t)|\\&-(1-{\tilde{h}}){\dot{\zeta }}^{T}(t-h(t))M_{3}{\dot{\zeta }}(t-h(t)) -2|{\dot{\zeta }}(t)|^{T}S_{1}B\zeta (t)\\&+2|{\dot{\zeta }}(t)|^{T}S_{1}[C+|\gamma |+|\delta |]|f(\xi (t-\tau (t)))|\\&+2|{\dot{\zeta }}(t)|^{T}S_{1}[|\alpha |+|\beta |]\int _{t-\sigma (t)}^{t}|f(\xi (s))|\mathrm{d}s\\&+2|{\dot{\zeta }}(t)|^{T}S_{1}Df({\dot{\xi }}(t-\rho (t)))\\&-2 |{\dot{\xi }}(t)|^{T}S_{2}A\xi (t)+2|{\dot{\xi }}(t)|^{T}S_{2}[E+|{\bar{\gamma }}|+|{\bar{\delta }}|]|\zeta (t-\mu (t))|\\&+2|{\dot{\xi }}(t)|^{T}S_{2}[|{\bar{\alpha }}|+|{\bar{\beta }}|]\int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s +2|{\dot{\xi }}(t)|^{T}S_{2}{\bar{D}}{\dot{\xi }}(t-h(t))\\&+{\tilde{\pi }}^{T}P{\tilde{\pi }}+{\tilde{\pi }}^{T}S_{1}{\tilde{\pi }}-\zeta ^{T}(t)J_{1}\zeta (t)-\xi ^{T}(t)J_{2}\xi (t)\\\le & {} \triangle ^{T}(t)\Sigma _{2}\triangle (t)-\zeta ^{T}(t)J_{1}\zeta (t)+{\tilde{\pi }}^{T}S_{1}{\tilde{\pi }}-\xi ^{T}(t)J_{2}\xi (t)+{\tilde{\pi }}^{T}P{\tilde{\pi }}, \end{aligned}$$

where,

$$\begin{aligned}&\triangle ^{T}(t)=\bigg [\zeta ^{T}(t),\;f^{T}\big (\xi (t)\big ),\;|f\big (\xi (t-\tau (t))\big )|^{T},\;\bigg (\displaystyle \int _{t-\sigma (t)}^{t}|f\big (\xi (s)\big )|\mathrm{d}s\bigg )^{T},\\&\quad f^{T}\big ({\dot{\xi }}(t-\rho (t))\big ),\;|{\dot{\zeta }}(t)|^{T},\;\xi ^{T}(t),\;|\zeta (t-\mu (t))|^{T},\;\bigg (\displaystyle \int _{t-\eta (t)}^{t}|\zeta (s)|\mathrm{d}s\bigg )^{T},\\&\quad {\dot{\zeta }}^{T}(t-h(t)),\;|{\dot{\xi }}(t)|^{T}\bigg ]^{T}. \end{aligned}$$

We choose positive constants \({\mathcal {N}}_{1},\;{\mathcal {N}}_{2}\) such that \({\mathcal {N}}_{1}+{\mathcal {N}}_{2}=1,\;{\mathcal {N}}_{1}\ne 0,\;{\mathcal {N}}_{2}\ne 0.\) Then, by the condition \(\Sigma _{2}<0,\) one obtains:

$$\begin{aligned} {\dot{V}}_{2}(t)\le & {} -\zeta ^{T}(t)J_{1}\zeta (t)-\xi ^{T}(t)J_{2}\xi (t)+({\mathcal {N}}_{1}+{\mathcal {N}}_{2}){\tilde{\pi }}^{T}(P+S_{1}){\tilde{\pi }}, \end{aligned}$$
(11)

when, \((\zeta ^{T}(t),\;\xi ^{T}(t))^{T}\in {\mathbb {R}}^{2n}\diagdown \Upsilon ,\) i.e. \((\zeta ^{T}(t),\;\xi ^{T}(t))^{T}\notin \Upsilon .\) Accordingly, if \((\varphi ^{T}(s),\;\psi ^{T}(s))^{T}\in \Upsilon _{1},\) then \((\zeta ^{T}(t),\xi ^{T}(t))^{T}\subseteq \Upsilon ,\;t\ge 0,\) which results the set \(\Upsilon \) is a positive invariant set of (1). If \((\varphi ^{T}(s),\;\psi ^{T}(s))^{T}\notin \Upsilon ,\) there exist some \({\mathcal {T}}>0\) such that \((\zeta ^{T}(t),\;\xi ^{T}(t))^{T}\subseteq \Upsilon ,\;t\ge t_{0}+{\mathcal {T}},\) which results the system (1) is a globally dissipative system and \(\Upsilon \) is a globally attractive set and a positive invariant set of (1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouiti, C., Touati, F. Stability and global dissipativity for neutral-type fuzzy genetic regulatory networks with mixed delays. Comp. Appl. Math. 40, 213 (2021). https://doi.org/10.1007/s40314-021-01604-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01604-5

Keywords

Mathematics Subject Classification

Navigation